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Abstract. A stage III ovarian cancer diagnosis yields a 22% 5-year survival 
rate, this applies to over half of the 7000 new cases diagnosed each year in the 
UK. Stratification of patients with this heterogeneous disease, based on active 
molecular pathways in their cancer, would aid a targeted treatment and improve 
prognosis. Hundreds of genes have been significantly associated with ovarian 
cancer, few have yet been verified. Exploration of published microarray data 
sets using Artificial Neural Networks confirmed the robustness of PRELP as a 
biomarker for survival time from stage III ovarian cancer, and generated a new 
panel of 44 genes that significantly predicted survival length of a blind valida-
tion set (p=0.00073). 
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1 Introduction 

With approximately 7000 new diagnoses each year, ovarian cancer is the 5th most 
common cancer in the UK. A 92% 5 year survival can be expected from a stage I 
diagnosis, this drops to 22% at stage III. Unfortunately, due to the asymptomatic na-
ture of the early stages of the disease and the lack of a sensitive screening tool, over 
half ovarian cancer cases are diagnosed at stage III or above [1]. 

Despite a wealth of data and information being produced from ovarian can-
cer patient material, little has changed in the diagnostic, prognostic or treatment care 
for patients with the disease [2]. Thus, stratification of patients suffering this hetero-
geneous disease, based on active molecular pathways in their cancer, would aid a 
targeted treatment and improve prognosis. 

Numerous genes have been significantly associated with ovarian cancer, yet 
few have been fully validated as biomarkers. In a comprehensive and systematic as-
sessment of the online data available, Braem et al [3] reported that of 1065 genetic 
variants investigated, 200 were statistically significant; of these, 105 were included in 
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replication studies of which only 19 have been exclusively positively replicated. 
However, no attempt has been made to validate the remaining statistically significant 
genetic variants. This suggests an opportunity for confirming or refuting potential 
biomarkers published to date as an alternative to generating new ones. In addition, 
exploration of published data using different analytical approaches and meta-analysis 
of comparable cohorts will eliminate genes that were incidentally flagged as signifi-
cant due to regional variation between sample cohorts, and focus on the genes and 
molecular pathways that show a consistent significant association between ovarian 
cancer and survival times. 

This study presents the use of different analytical approaches to interpret 
ovarian microarray data. In this paper artificial neural networks (ANNs) were used to 
identify biomarkers for ovarian cancer. STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins), a freely available online databank of genomic and prote-
omic relationships, was used to filter out biological components based on reported 
relevance.  

2 Materials and Methods 

2.1 Ovarian dataset 

The stage III ovarian microarray data with accession number E-GEOD-13876 availa-
ble in the ArrayExpress website [4] was selected and downloaded for analysis. This 
microarray data reported by Crijins et al. [5] contains 157 samples collected from 
ovarian cancer patients who have been treated with the same care pathway, was cate-
gorized into 3 groups; short-term survival (below 14 months of survival, 48 samples), 
long-term survival (over 25 months of survival, 37 samples) and in-between (14 – 25 
months of survival, 72 samples). The samples were hybridized to high-density oligo-
nucleotide microarrays using Operon v3.0 technology and replicated into 2 sets, i.e. 
Set 1 and Set 2. Each of these sets contains 34592 gene probe expression levels. De-
tailed information on the sample preparation on this dataset can be found in the origi-
nal study [5] and from the ArrayExpress website. To maximize the chance of deriving 
a panel of markers that can distinguish between survival times, it was decided to 
compare short- and long-term survival groups. In this paper, the Set 1 was used for 
data modeling and the Set 2 served as blind validation set. 
 

2.2 Artificial neural network analysis 

An in-house designed artificial neural network (ANN) algorithm [6,7] was used to 
identify a set of gene probes which can correctly predict survival times (i.e. short- and 
long-term survival) for ovarian cancer patients. To screen candidate markers, a 3-
layered backpropagation ANN model with the structure of 1-2-1 was applied. The Set 
1 dataset was randomly partitioned into training, test and validation sets in which the 
training set was used to train the network, the test set was used to stop the network 
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when the optimum classification performance of the network was achieved and the 
validation set was used to test the predictive performance of the network. The ratio for 
the training, test and validation sets was 0.6:0.2:0.2, respectively. The samples were 
randomly allocated into each of these groups 50 times each time a new network mod-
el was created to avoid any bias on the reported results. 

The following exhaustive search strategy was embedded into the algorithm: a 
new probe set id is selected as the input node in the network input layer each time a 
new network model was created; the sigmoid activation function was applied in the 
models; three hundred (300) epochs were used for the training process and 100 
epochs for testing window stopping if the mean square error (MSE) failed to improve 
less than 0.01 over the window; a single input node was deliberately applied in this 
analysis to ensure that all probe sets in the data were thoroughly examined by the 
ANN. 
 

2.3 Protein interaction database 

The online protein interaction database Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) was used to visualize the association between identified 
markers. STRING [8] is an online, comprehensive, biological database of known and 
predicted protein-protein interactions. It is freely available and contains listings of 
proteins linked by; localization, homology, text-mining, databases, experiments, co-
expression, co-occurrence and gene fusion. Lists of gene or protein identifiers can be 
mapped in STRING and interactions between those listed are generated and displayed 
diagrammatically.  
 

3 Results and Discussion 

Two hundred (200) gene probes with significant expression values were highly 
ranked by ANN. The list of genes that were found to be significantly different be-
tween long- and short-term survivals was compared to those found by Crijins et al. 
[5]. One of the 86 gene probes mentioned in Crijins ranked in the significant top pro-
portion (PREPLP ranked 12th out of 34592 gene probes; 0.03%), however the re-
maining 85 genes appeared spread across this rank order (34592 gene probes).  

A rudimentary literature search was conducted; counting the number of pub-
lications in which the gene code or the gene name (of which there can be multiple) of 
the 200 genes of interest occurred with terms such as “ovarian OR ovary”, “cancer”, 
“ovarian neoplasm”, “ovarian cancer”. Many were documented to be related to can-
cer and other diseases, few already linked to ovarian cancer and some were not linked 
via literature to cancer or ovarian disease. 

The identified list of 200 gene probes was further condensed to those that 
were already annotated with a gene code. These were entered into STRING to identi-
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fy any relationships amongst the proteins they code for. Forty four (44) were found to 
be linked already at least by co-mention in literature, as shown in Fig. 1 and Table 1. 

 

 
Fig. 1. Gene-gene interaction of the 44 associated genes in STRING database 
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Table 1. Summary of the mapped 44 genes in STRING database. 
      

Gene Symbol Database Entry Description 
ADAMTS1 NM_006988;AL162080 ADAM Metallopeptidase With Thrombospondin Type 1 Motif, 1 
ADAMTS3 NM_014243;AB002364 ADAM metallopeptidase with thrombospondin type 1 motif, 3 
ANK1 X16609;NM_020477 Ankyrin 1, Erythrocytic 
BDKRB2 AF378542;NM_000623 Bradykinin Receptor B2 
BMP4 NM_001202;D30751 Bone Morphogenetic Protein 4 
CAPN1 BC015091 Calpain 1, (mu/I) large subunit 
CDK7 BC005298;NM_001799 Cyclin-dependent kinase 7 
COL13A1 AJ293624;NM_080812 Collagen, type XIII, alpha 1 
COMP S79500;NM_000095 Cartilage oligomeric matrix protein 
CREBBP U89355;NM_004380 CREB binding protein 
DCN NM_133506;BC005322 Decorin 
DGKZ U94905;NM_003646 Diacylglycerol kinase, zeta 
EFHD2 BC014923;NM_024329 EF-hand domain family, member D2 
FGFR1 M34188;NM_023111 Fibroblast growth factor receptor 1 
FHL2 NM_001450;U60117 Four and a half LIM domains 2 
FRK BC012916;NM_002031 Fyn-related kinase 
FURIN NM_002569;A06939 Furin (paired basic amino acid cleaving enzyme) 

GALNT6 Y08565;NM_007210 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 6 (GalNAc-T6) 

IGF2 M22373;NM_000612_X07868 Insulin-like growth factor 2 (somatomedin A) 
IGFBP6 M69054;NM_002178 Insulin-like growth factor binding protein 6 
IRF1 BC009483;NM_002198  Interferon regulatory factor 1 
LDLR BC014514;NM_000527 Low Density Lipoprotein Receptor 
LUM BC007038;NM_002345 Lumican 
MAP1B L06237;NM_032010 Microtubule-associated protein 1B 
MFAP2 BC015039;NM_017459 Microfibrillar-associated protein 2 
MMP7 BC003635;NM_002423 Matrix metallopeptidase 7 (matrilysin, uterine) 
MUC1 L38597 Mucin 1, cell surface associated 
MUC4 AJ242544;NM_004532 Mucin 4, cell surface associated 
NDST3 NM_004784;AF074924 N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3 
PHB no link in adrf file Prohibitin 
PLAG1 U65002;NM_002655 Pleiomorphic adenoma gene 1 

PPARGC1A  AF106698;NM_013261 
Peroxisome proliferator-activated receptor gamma, coactivator 1 
alpha 

PRELP NM_002725;BC032498 Proline/arginine-rich end leucine-rich repeat protein 
RAB5B AF267863;NM_002868 RAB5B, member RAS oncogene family 
RBM6 U50839;NM_005777 RNA binding motif protein 6 
SDC4 BC030805;NM_002999 Syndecan 4 

SERPINA1 M26123;NM_000295 
Serpin Peptidase Inhibitor, Clade A (alpha-1 antiproteinase, an-
titrypsin), member 1 

SORT1 X98248;NM_002959 Sortilin 1 
STXBP2 NM_006949;U63533 Syntaxin binding protein 2 
TNFRSF13C NM_052945;AF373846 Tumor necrosis factor receptor superfamily, member 13C 
TRIM29 NM_058193;AF230389 Tripartite motif containing 29 
VIM NM_003380;M25246 Vimentin 
WNT7A NM_004625;BC008811 Wingless-type MMTV integration site family, member 7A 
 

   
The predictive power of these 44 genes discriminating short- and long-term 

survivors were further validated using a separate set of technical replicates (Set 2). 
Amongst the 85 blind samples 56 (65.9%) were correctly classified as short- or long-
term survivors with the 14 month and 25 month boundaries. The predictive perfor-
mance of the model was assessed, Fig. 2 shows the predicted survival against actual 
survival. 
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Fig. 2. Kaplan and Meier plot comparing the predicted survival group against the actual 

survival time of patients based on the 44 gene panel 
 

Crijins et al [5], who published the microarray data reanalyzed in the current study, 
used a continuous prediction algorithm to generate a list of 86 genes that can deter-
mine a favorable or unfavorable survival prognosis. In this paper, an ANN combined 
with STRING was used to generate a list of 44 genes that could successfully predict 
short- or long-term survival of a validation set (p=0.00073). Proline/arginine-rich end 
leucine-rich repeat protein (PRELP) appears in both lists of genes, further implicating 
its involvement in molecular pathways activated in ovarian cancer. 

Furthermore, by applying different filtering tools to determine significantly differ-
entially expressed genes; a new list of 44 genes has been generated. The finding of 
genes already associated with ovarian cancer in the 44 gene panel, namely IGF2 and 
BMP4 [9,10,11,12,13], provides confidence in the methods used and warrants deeper 
investigation into those which are not. Both lists add to an ever building body of evi-
dence of gene expression in ovarian cancer. 

Despite the high number of publications producing and analyzing data from micro-
array experiments, there is no consensus on how the data should be pre-processed, 
processed and mined [14, 15, 16]. These results are an example of how published data 
can be complemented by reanalysis. Findings that are found to be of significant inter-
est through a separate evaluation become less likely to be an artefact of the subsam-
pling of cases or computational method used. 
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4 Conclusions and Future Work 

To conclude, exploration of published data using a different non-linear analytical 
strategy offers robustness and highlights PRELP as a putative biomarker for stage III 
ovarian cancer, and, generated a panel of 44 genes that significantly predicted surviv-
al length of a blind validation set (p=0.00073). These results warrant further research, 
primarily a meta-analysis with similar datasets. This adds to the growing body of 
genomic information relating to ovarian cancer and contributes to the ability to pre-
dict a patient’s likelihood to respond to a care pathway and would help clinicians 
navigate patients through therapy. In this instance, revealing a patient’s prognosis in 
the standard care pathway may warrant more radical treatment options. 

Further investigation and testing of the 44 gene model on a different patient 
cohort with the same diagnosis would provide an opportunity for validation and meta-
analysis. Further exploration on different curated databases would confirm the biolog-
ical links between these genes. 
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