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Abstract. In last years, many research efforts in neurosciences have
focused in multivariate approaches based on machine learning as an al-
ternative to the use of Statistical Parametric Mapping and the univariate
analyses that it provides. However, this relatively new field still lacks of
a software framework that completely meets the needs of the scientific
community. In this work we present a toolbox designed to facilitate the
access to the recent advances in neuroimaging data analysis based on
multivariate approaches. The toolbox, written on Matlab, is freely avail-
able and implements a Graphical User Interface that allows managing
neuroimaging data in an easy way.
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1 Introduction

Neuroimaging technology is advancing at an impressive pace and is having huge
fallouts both at the research and at the practical clinical level. Both, struc-
tural and functional neuroimages are commonly used to assist the diagnosis of
several neurodegenerative disorders, including Alzheimer’s disease and Parkin-
sonism [19, 28, 8, 2, 23]. In this regard, the imaging techniques based on nuclear
medicine have played an important role in the early diagnosis of dementia [25,
11, 18, 7].

Nowadays there exist many software alternatives to deal with neuroimages.
According to their functionality, they can be divided in two branches: toolboxes
mainly focused in the handling of neuroimaging data (MRIcron 5, QuantiSPECT
or PMod 6 are some examples), and the software that not only allows to manage

5 http://www.cabiatl.com/mricro/mricro/
6 http://www.pmod.com/technologies/index.html
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the data but also makes possible to perform statistical analyses. Toolboxes in
the latter branch, in turn, can be classified according to the kind of analyses
they perform.

Over the last two decades, the analysis of neuroimaging data have been suc-
cessfully addressed through univariate approaches, which analyze separately each
voxel of the brain volumes. In that sense, the General Linear Model (GLM) im-
plemented in Statistical Parametric Mapping (SPM) [6] has become the stan-
dard approach for analyzing functional imaging data. Instead, structural imaging
modalities such as Magnetic Resonance Imaging (MRI) are commonly studied by
means of the Voxel-Based Morphometry (VBM) approach [1], which investigates
focal differences in gray matter density between groups of subjects.

In recent years, an important part of neuroimaging community has focused on
multivariate approaches motivated by the recent advances in machine learning
algorithms and the development of new statistical classifiers with a high general-
ization ability. Accordingly, a new toolbox that facilitates performing multivari-
ate analysis on neuroimaging have been recently presented [22]. PRoNTo 7 is an
open-source toolbox that allows to perform machine learning based analysis in
an easy way thanks to a Graphical User Interface (GUI) similar to SPM. Other
examples of toolboxes that implement multivariate analyses are Matlab MVPA8

or Sci-kit Learn9, however these ones lack of a GUI and are used through the
command line.

In this work, we present a recently developed toolbox to manage and an-
alyze neuroimaging data by means of multivariate techniques. This toolbox is
addressed to clinicians and other researchers and its main purpose is making
accessible the recent advances in Computer Aided Diagnosis (CAD) systems
based on neuroimaging data. It is based on Matlab and is compatible with SPM
(since it support Analyze and NIFTI formats), allowing a easy adaptation to
experienced clinicians and neuropsychologists.

The manuscript is organized as follows. After this introduction, section 2
draws some concepts about the application of machine learning based procedures
to neuroimaging data. Section 3 presents the toolbox we have developed. And
finally, the discussion and conclusions are gathered in the section 4. This section
includes a comparison with previous approaches.

2 Machine learning on neuroimaging

Neuroimaging data are usually stored as a sequence of voxels intensities, which
interpretation depends on the modality used. For example, in the case of Positron
Emission Tomography (PET) with 18FDG radiotracer, each voxel intensity rep-
resents the glucose intake at its location in the brain. Instead for structural
MRI, after segmentation of the image (into grey matter, white matter and cere-
brospinal fluid), the voxel intensities represent the local density of each tissue.

7 http://www.mlnl.cs.ucl.ac.uk/pronto/
8 https://code.google.com/p/princeton-mvpa-toolbox/
9 http://scikit-learn.org/stable/
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A labeled dataset consists of pairs of a neurimage (as a sequence of voxels
intensities), Xi ∈ Rd, and its label, yi, that define the category to which that neu-
roimage belongs to. Given such neuroimage dataset, D = {Xi, yi}, i = 1, ..., N ,
the goal of a machine learning algorithm is to learn a function f that can accu-
rately predict the labels of new unseen neuroimages [15]:

f(Xi) = yi (1)

The classification can be perform using all the voxels in the brain volumes or
specific regions of interest. Scanning the brain volume with a series of ROIs, such
as in the searchlight approach [14]. Because of their prediction capacity, machine
learning approaches are frequently used in the development of CAD systems for
several disorders.

The main challenge of applying machine techniques to neuroimaging data is
dealing with the dimensionality of the data, i.e. the huge number of voxels in a
brain image (typically of few tens of thousand) compared to the limited number
of samples (typically a few tens).

Due to this difference, the machine learning based studies usually suffer from
the small sample size problem [4]. In order to address it, a dimensionality re-
duction technique can be applied. In that sense, methods based on Principal
Component Analysis, Partial Least Squares and Independent Components Anal-
ysis have been successfully used [11, 25, 11]. These techniques, implemented in
PETRA toolbox, are briefly described bellow.

2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a simple, non-parametric method to
extract relevant information from large data sets [12]. Mathematically, PCA
performs a linear transformation that projects the data on a different orthogonal
coordinate system such that the largest variance by any projection of the data
comes to lie on the first dimension, the second largest variance on the second
dimension, and so on. It can be used to reduce the imaging data dimensionality
as follows:

Let X = [x1,x2, ...,xn] be a set of n brain volumes with each vector xi being
a sequence of voxel intensities. First the images are transformed to have zero
mean and unity norm, resulting in a new set Z = [z1, z2, ..., zn]. The covariance
matrix, C, is then computed:

C =
1

N
ZZt (2)

Subsequently, the eigenvector Γ and eigenvalue Λ matrices are calculated as
CΓ = ΓΛ. Since the image size is greater than the number of images, diagonal-
izing ZtZ instead of ZZt reduces the computational burden and the eigenvec-
tors/eigenvalues decomposition is reformulated as [26]:

(ZtZ)Φ = ΦΛ∗ (3)
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Γ ∗ = ZΦ (4)

where Λ∗ = diag(λ1, λ2, ..., λn) and Γ ∗ = [Γ1, Γ2, ...Γn] are the first n eigenvalues
and eigenvectors respectively. Finally, the images are modeled by projecting them
over those eigenvectors (a.k.a. principal components).

2.2 Partial Least Squares

Partial Least Squares (PLS) is a statistical method that model the data in func-
tion of latent (i.e. not directly observed or measured) variables [27]. Therefore
it is similar to PCA however PLS carries out the transformation by maximizing
the covariance between the data and some properties of the data. Mathemati-
cally, PLS is a linear algorithm for modeling the relation between two data sets
X ⊂ RN and Y ⊂ RM . After observing n data samples from each block of
variables, PLS decomposes the n×N matrix of zero-mean variables, X, and the
n×M matrix of zero-mean variables, Y, into the form

X = TPT + E

Y = UQT + F (5)

where N and M are respectively the number of features and the number of
properties of the observed variables. T and U are n×pmatrices of the p extracted
score vectors (also known as components or latent vectors), the N × p matrix P
and the M × p matrix Q are the matrices of loadings and the n ×N matrix E
and the n×M matrix F are the matrices of residuals (or error matrices).

For dimensionality reduction purposes, matrices X and Y are formed with
the imaging data and their labels respectively [24]. After the decomposition, the
x-scores in T are linear combinations of the variables in X and can be considered
a good summary of the neuroimaging data.

2.3 Independent Components Analysis

Independent Components Analysis (ICA) is a computational method for sepa-
rating a multivariate signal into additive subcomponents supposing the mutual
statistical independence of the non-Gaussian source signals [3]. Its main appli-
cations is blind source separation, which, in its linear form, consists in finding
the sources S which, when mixing using a weight matrix A, provide the vector
X of observed variables:

X = AS (6)

where the sources S = (s1, s2, ..., sn) are assumed to be statistically independent.
In order to estimate both the mixing matrix A and the sources S, ICA adaptively
calculates the matrix W = A−1 which either maximizes the nongaussianity or
minimizes the mutual information. This technique has been successfully applied
to dimension reduction problems by projecting the data into its independent
components, performing that way the reduction [11].
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2.4 Neuroimaging preprocessing

In order to make comparable neuroimaging data from different subjects, a pre-
processing procedure should be performed. This procedure is usually divided in
two steps: spatial normalization and intensity normalization. The former ensures
that the same position in the volume coordinate system in different images corre-
sponds to the same anatomical position. Several procedures have been proposed
to perform that normalization. A comparison between them can be found in [13].

The intensity normalization step, in turn, removes the differences in the
voxels intensity due to the application of different acquisition protocols. It is
specially suitable in studies that involve nuclear imaging modalities, where the
voxels intensity also depends on the radiopharmaceutical uptake. Several algo-
rithms have been proposed to carry out this normalization [20, 5, 21] but, in
general, they proceed to equalize the intensity of voxels not affecting by the
disorder under study.

3 PETRA toolbox

The main purpose of this toolbox is to serve as a diagnosis assistant system whose
decisions are based on the automatic analysis of neuroimaging data. Since the
potential user is not necessarily familiar with the use of command line interfaces,
the toolbox presented here is equipped with a complete GUI. This interface
allows accessing all the features provided by the toolbox. Its main characteristics
are listed below along with a small description:

– Support for the main neuroimaging file formats. The toolbox is able
to load and save images stored in Dicom (.dcm), Nifti/Analyze (.hdr/.img
and .nii) and other terms.

– Multiple image modalities. At the moment, the toolbox supports the fol-
lowing image modalities: SPECT ECD, FDG-PET and DaTSCAN (SPECT).

– Different ways of displaying the data. Although the most interesting
feature are related to the statistical analysis of the data, the toolbox provides
several options to visually analyze and compare neuroimages. Specifically,
once loaded, the brain volumes can be shown in three different modes: i) in
a list, with three slices (one per dimension) per volume, ii) as a sequence,
showing only one volume at a time and, iii) in a grid with a slice from each
volume, allowing the visual comparison of the volumes. Figure 1 shows three
screenshots of the toolbox display facilities, one per each display mode.

– Automatic orientation of the brain volumes. Spatial normalization
requires that both, image and template have equal orientation. In addition,
the multivariate analyses also suppose that all the images have the same
orientation. In order to ensure that, the neuroimaging data are automatically
oriented to a predefined orientation using the procedure described in [10].

– Image normalization. Both intensity and spatial normalization may be
performed through the GUI. Regarding the intensity normalization, two
methods are provided: based on the maximum [21] and based on the global
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Fig. 1. Display facilities of the PETRA toolbox
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intensity [5]. However, spatial normalization is not implemented in the tool-
box at the moment. Instead, it uses the routines included in SPM (and
therefore this function requires SPM is installed on our system).

– Freely available and multi-platform Petra toolbox can be freely down-
load from http://http://tst1.ugr.es/petra/. Since it is developed on Mat-
lab10, is can be run in Windows and Unix-based systems (such as Linux
or Mac OS). The widespread use of Matlab in the neuroscience community
and its high-level language makes it one of the most appropriate option to
analyze neuroimaging data.

3.1 PETRA as a computer aided diagnosis system

In order to estimate the class (healthy or pathological) of a given image, a
classification function (see Equation 1) should be used. This kind of functions,
known as training in the toolbox interface, has a specific form (depending on the
classification algorithm) and thus relies on a set of parameters. These parameters
need to be estimated in order to provide an accurate prediction. For supervised
learning approaches, this is called training phase and requires a training dataset
that includes the images with their labels.

The following classification methods are implemented at the moment11: Spa-
tial Component Analysis [9], PCA-based system [17], PCA- and LDA-based
system [16], PCA on class means, ICA on class mean and PLS-based system
[24]. Please, see the corresponding references for further information.

Classification function can be saved and applied later on new images to pre-
dict their class. Figure 2 shows the window displayed after estimating the class
for a new image. Notice that not only the category is provided, but it shows
additional information that can be used to measure the estimation confidence.
For example, when a method based in the singular value decomposition (such
as PCA of PLS) is used, the results window also shows the first eigenbrains [11,
17], i.e. the first eigenvectors in 3D-volume form. The eigenbrains can be viewed
as elementary brain volumes from which all the images are built and are useful
to realize the regions focused by the dimensionality reduction.

4 Discussion and conclusions

We have presented a software toolbox designed to assist clinicians in the diag-
nosis of neurological disorders that can be predicted though neuroimaging data,
such as Alzheimer’s disease or Parkinsonism. This toolbox benefits from recent
advances in machine learning based algorithms and facilitates their application
in the clinical practice.

From a technical point of view, the main novelty introduced by this toolbox
is the combination of advanced dimensionality reduction techniques and recent

10 A comercial software created by Mathworks
11 Running most of these methods requires using the Matlab statistical toolbox, thus

a specific license of it is need.
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Fig. 2. Petra GUI window showing the results of estimating the class for a new neu-
roimage.

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 1309



machine learning algorithms. All the methods implemented in the software have
been published in peer review-journals and therefore accepted by the scientific
community. In addition, the GUI has been meticulously implemented to be ac-
cessible to people not familiarized with pattern recognition algorithms.

As mentioned in the introduction, there already exist several toolboxes to
deal with neuroimaging data but, to our knowledge, neither of them contains
the features provided by PETRA toolbox: tools for visually analyze neuroim-
ages, ability to perform statistical analyses (including the normalization of the
data), user-friendly GUI, etc. Probably, the most similar alternatives (from a
functionality point of view) are SPM and PRoNTo. The other ones lack of either
statistical analysis abilities or a GUI that makes them suitable to user not used
to command line interfaces. Nevertheless, it is worth noting that both SPM and
PRoNTo are richer toolboxes which provide more image utilities and application
possibilities. Indeed, these softwares have several years of development (decades
in the case of SPM) whereas Petra is still in an initial stage. Nonetheless, Petra
provides, in our opinion, some advantages. Compared to SPM, PETRA is able
to perform multivariate analyses, which provide higher sensitivity and are more
suitable for the assisted diagnosis. In general, SPM is more suitable for group
comparisons whereas Petra is more suitable for the assisted diagnosis. Compared
to PRoNTo, our toolbox implements dimensionality reduction techniques, which
allow to mitigate the small sample size problem. In addition, it provides a way
to save classification functions (i.e. a training procedure) that makes possible
to categorize new images in an easy way and enforce its capabilities as CAD
system.
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