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Abstract. Magnetic Resonance Spectroscopy for brain tumour diagno-
sis is progressively replacing harmful biopsy. Nonetheless, dealing with
such multidimensional outcome becomes a difficult task for the medical
community. Computation-based tools able to effectively reduce dimen-
sionality of data without losing diagnostic ability ease the interpretation
of results. The current study presents a novel technique to improve stabil-
ity of feature subset selection algorithms by means of an instance weight-
ing approach. We report experiments performed on real data showing an
improvement on feature selection stability up to 40%.
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1 Introduction

Diagnosis of brain tumours from Magnetic Resonance Spectroscopy (MRS) is a
non-invasive technique aiming at substituting the gold-standard but unpleasant
biopsy. The combination of MRS results with Machine Learning (ML) solutions
is a promising tool to accurately diagnose new patients. However, practition-
ers often face the problem of building reliable models using only few available
instances (records of patients), which moreover are made up of a large set of
features. The difficulty of interpreting models with large numbers of features is
alleviated by the use of Feature Selection (FS) techniques, which aim at picking
the very relevant features explaining the target concept of interest. Neverthe-
less, the confidence in a model highly depends on its stability with respect to
changes in the data used to obtain it, either in the instances themselves or in
the features used to describe them. For example, in a typical FS process using
cross-validation, different features are typically selected in every validation fold.

Previous research interest in this direction has focused mainly in assessing
the performance of different FS algorithms in terms of feature subset stability,
leading to the development of measures to properly evaluate it [1, 2]; few works
address the explicit improvement of such stability, notably an Ensemble-base FS
[3] and a Group-base FS [4]. More recently, Han et al. [5] coupled the hypothesis
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margin with an importance sampling approach to diminish the small sample size
problem resulting in more stable subsets of features.

In the current study we present a novel method that aims at providing a
more stable selection of feature subsets when variations in the training process
occur. This is accomplished by weighting the instances according to their out-
lying behavior; this weighting is a preprocessing step that is independent of the
learner or the specific FS algorithm. We report performance in two series of
experiments: first using microarray gene expression datasets and then brain tu-
mour MRS data for the diagnosis of two severe pathologies (glioblastomas and
metastases) [6, 7]. Our results show increases in FS stability up to a 40%.

2 A new Instance Weighting method

Let D = {(x1, t1), . . . , (xN , tN )} be a training data set of length N , each instance
xi ∈ Rd with its corresponding class label ti. The proposed method assesses the
importance of each instance according to its outlying behavior before applying
any FS strategy. In particular, the approach is based on the hypothesis mar-
gin concept, which states that “the margin of an hypothesis with respect to an
instance is the distance between the hypothesis and the closest hypothesis that
assigns alternative label to the given instance” [8]. The margin of a hypothesis
x ∈ Rd can be calculated as

θ(x) =
1

2
(‖x−m(x)‖ − ‖x− h(x)‖) . (1)

A single outlier in a neighborhood might mislead the margin calculus of all its
neighbors. With the purpose of obtaining a more robust evaluation, the average
margin between every instance in D and all the rest can be calculated:

θ(x) =
1

M

M∑
i=1

‖x−mi(x)‖ − 1

H

H∑
i=1

‖x− hi(x)‖, (2)

being mi(x) and hi(x) the i-th nearest miss (instance of different class) and i-th
nearest hit (instance of same class) in D, respectively; where M,H are the total
number of misses and hits (such that M +H + 1 = N).

Instances x achieving highly positive θ(x) present good modeling behavior
(being far from misses and close to hits), while those with highly negative θ(x)
become outlying ones (surrounded by misses and far from hits). The presence or
absence of these latter instances is therefore a source of unstability. In order to
obtain a bounded positive weight in (0, 1), we use a logistic function:

ω(x) =
1

1 + exp {−α z (θ (x))}
, (3)

where α is a parameter controlling the slope, and z(·) is the standard score
z(x) = (x− µ̂D)/σ̂D, being µ̂D and σ̂D the sample mean and standard deviation
of θ(x), for all x ∈ D, respectively. A suitable value for α will depend on the
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Fig. 1: Ratings assigned by RLIW to the synthetic illustrative instances.

problem and the user’s needs. As a default value, we propose to set α = 3.03,
which corresponds to assign a weight of 0.954 to an instance whose average
margin is two standard deviations from the mean, that is θ(x) = 2σ̂D.

The proposed Reweighted Logistic Instance Weighting (RLIW) performs fea-
ture selection by repeatedly applying Eqs. (2), (3) to compute the ω weights,
use them in a weighted FS algorithm, removing the worst feature (or features),
re-compute the ω weights, etc, until a stopping criterion is met.

An example. In order to illustrate the RLIW procedure, a simple example is
provided. Let X ∈ RN×F be a synthetic dataset, where N = 30 is the number
of instances, and F = 2 the number of features; and y ∈ {1,−1}N is the vector
of labels providing the class membership of every instance. Each instance was
obtained by equally sampling from one of two distributions: either x ∼ N (µ1, Σ)
or x ∼ N (µ2, Σ), where µ1 = [0, 0] , µ2 = [0, 0.25] and Σ = [ 0.01 0.00

0.00 0.01 ]; and
labeled according to the distribution it comes from.

Fig. 1 shows the dataset with the weighting obtained by RLIW, which clearly
assigns low values to instances close to the boundary between classes and those
inside opposite-class region; and assigns higher values the farther from the bound-
ary inside the proper-class region. This is consistent with the intuition that out-
lying instances are a source of unstability and therefore, must be lowly rated.

2.1 Embedding into a Feature Selection algorithm

The weights in Eq. (3) need to be supplied to FS algorithms capable to accept
them to improve its selection ability. Here we present two different approaches.

SVM-RFE. SVM-RFE (Support Vector Machine – Recursive Feature Elimina-
tion) [9] is a backward selection algorithm that uses the weights of a linear SVM
to rank the remaining features at each iteration. It starts up by using all the
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available features to train a soft-margin SVM optimizing the objective function

min
1

2
‖w‖2 + C

N∑
i=1

ξi,

where ξ is a vector of slack variables or deviations from the hyperplane, C is
the hyperparameter that controls the trade-off between separating with maximal
margin and allowing missclassifications; w =

∑N
i=1 αiyixi is the weight vector,

being α,y,x the vectors of Lagrangian parameters, class labels and instances,
respectively. Once convergence is achieved, the weight vector is used to compute
the ranking criterion for each feature as cj = |wj |. Those features with the lowest
rank are discarded, starting the next iteration using only the remaining ones.

In this study we use an extension of the SVM that inserts instance weights
to multiply the slack variable in the objective function [5]:

min
1

2
‖w‖2 + C

N∑
i=1

ωiξi,

where ωi = ω(xi) is the weight assigned to the i-th instance, according to Eq. 3.

RelievedF-RFE. Relief is a family of FS filters that use the hypothesis-margin
concept in Eq. 1 to assess the importance of each feature in a dataset D as the
accumulated influence that each feature has in computing the margin of every
instance in D. In particular, RelievedF [10] is a deterministic feature ranking
algorithm that depends on a user-defined parameter k. The algorithm picks
one instance at a time and computes the hypothesis margin of each feature
independently, accumulating the feature-wise distances to the k nearest hits and
k nearest misses. As a result, the weight W (j) given to feature j is its average
distance to the selected neighbors:

W (j) =
N∑
i=1

1

k

k∑
l=1

(|xi,j −ml(xi)j | − |xi,j − hl(xi)j |) .

Using this weighting strategy, features can be ranked and those ones with lowest
rank can be removed. Feature subset selection can be obtained by repeatedly
applying the previous equation while removing the worst feature (or features) at
a time, obtaining RelievedF-RFE. In order to be able to use instance weights,
we make use of a weighted version [5] of RelievedF:

W (j) =

N∑
i=1

ωi

k∑
l=1

(
ωM
i,l |xi,j −ml(xi)j | − ωH

i,l|xi,j − hl(xi)j |
)
, (4)

where ωi = ω(xi), ω
M
i,l = ω(ml(xi)) and ωH

i,l = ω(hl(xi)), obtained in Eq. 3.
Using this double weighting strategy, features can be ranked according to their
importance, and at the same time favoring stability due to the ω weights.
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2.2 Comparison with previous approaches

The study proposed in [5] not only provided a theoretical analysis on the bias-
variance decomposition of the FS error –showing the suitability of Instance
Weighting (IW) for reducing variance– but also supplied an empirical framework
to effectively calculate the importance of each instance. Specifically, the strategy
consists in two basic steps: first, all instances are mapped into a new margin
vector feature space (MVFS) where each coordinate is calculated according to
the equation:

x′i,j =
M∑
l=1

|xi,j −ml(xi)j | −
H∑
l=1

|xi,j − hl(xi)j |. (5)

Then, using this new coordinate system, the importance of each instance is
calculated:

ω(x) =
1/d̄(x′)∑N
i=1 1/d̄(x′i)

, (6)

where

d̄(x′) =
1

N − 1

N−1∑
p=1,x′

p 6=x′

‖x′ − x′p‖. (7)

A first concern with this proposal arises when mapping to the new MVFS.
According to Eq. 5, a new coordinate is derived for each dimension of an instance;
given that in Eq. 7 all dimensions are considered at a time by means of Euclidean
distance, there is no need for an explicit calculation of each new coordinate.

Second, the imposition of a normalization factor in Eq. 6 –such that the sum
of all weights adds to 1– might lead to undesirable effects. In a hypothetical
setting where N instances are equally separated at distance 1 in the MVFS,
the assigned weight should be innocuous and directly comparable to standard
FS without IW (Std-FS). However, due to the normalization, every instance is
weighed as 1/N . The undesirable side effect can be clearly appreciated in the
case of SVM-RFE, where the value of the C parameter is reduced by a factor
of N . Furthermore, the relative difference in weighting between two instances is
minimized, negatively affecting weighted FS techniques, such as RelievedF-RFE.

3 Experimental Work

3.1 Datasets used

Han & Yu Synthetic Data. A synthetic dataset previously used to verify
the performance of stable feature subset strategies [5] is also employed in this
study. It consists of M = 500 training sets, each of the form Xm ∈ RN×F ,
with N = 100 instances and F = 1, 000 features, for m = 1, . . . ,M . Every
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instance is equiprobably drawn from one of two distributions: x ∼ N (µ1, Σ) or
x ∼ N (µ2, Σ), where

µ1 = (0.5, ..., 0.5︸ ︷︷ ︸
50

, 0, ..., 0︸ ︷︷ ︸
950

), µ2 = −µ1,

and

Σ =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · Σ100

 ,
being Σi ∈ R10×10, with 1 in its diagonal elements and 0.8 elsewhere. Class
labels are assigned according to the expression:

yi = sgn

 F∑
j=1

Xi,jrj

 , r = (0.02, ..., 0.02︸ ︷︷ ︸
50

, 0, ..., 0︸ ︷︷ ︸
950

).

Real Microarray Data. A widely-used collection of microarray datasets pre-
senting a variety of diseases will be of use. In particular, Colon [11] and Leukemia
[12] cancer datasets are directly employed (N = 62, F = 2000; N = 72,
F = 7129, respectively). In the case of Prostate [13] cancer dataset, a pre-
processing similar as the one in [14] is performed: it consists in fixing a valid
range of values for each feature to lay between [10, 16000]. Any value out of this
interval is set to its closest limit. Afterwards, features presenting low variability
(max/min < 5 or max − min < 50) are removed (N = 102, F = 6034). For
the Lung [15] (N = 181), Breast [16] (N = 97) and Melanoma [17] (N = 70)
cancer datasets, as well as for Parkinson [18] (N = 105) dataset, a standard
t-test, keeping the 5000 top features (F = 5000), is applied [5].

Real MRS Data. Different datasets containing Single-Voxel Proton Magnetic
Resonance Spectroscopy (SV-1H-MRS) data of human brain tumours are also
used to validate our method, coming from the international, multi-centre IN-
TERPRET European project database [6]. Specifically, the two datasets consist
in 78 glioblastomas (GL) and 31 metastases (ME), N = 109, at Long and Short
Time of Echo (LTE and STE, respectively), each described by F = 195 features.
The extreme difficulty of discriminating among these two types of tumours has
been largely reported in several previous studies (see e.g. [19]). An independent
test set composed of 10 GL and 30 ME (both at STE and LTE) is also used to
properly validate the proposed RLIW method [7].

3.2 Figures of merit

Feature subset stability. The stability of a FS algorithm in selecting a subset
of k features out of the initial sample feature size F over a batch of M runs can
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be evaluated using the Kuncheva index (KI) [1], defined as

IS (E(k)) =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

IC (Si(k), Sj(k))

IC (Si(k), Sj(k)) =
|Si(k) ∩ Sj(k)| − (k2/F )

k − (k2/F )

where Si(k) is the subset of selected features of length k in the i-th run; and
E = {S1, S2, ..., SM} is the set containing all the retrieved feature subsets. KI
values are bounded between −1 and 1, being this last one the maximum stability.

Prediction accuracy. The measure of choice for the correctness of the predic-
tions provided by the classifiers is the average of the balanced accuracy or BAC
[20], well suited to deal with unbalanced datasets:

BAC (Z) =
1

2M

M∑
i=1

(
|j /Zij = 0 ∧ Yj = 0|

N0
+
|j /Zij = 1 ∧ Yj = 1|

N1

)
where Zi are the predictions at the i-th run; Y is the vector of true class labels;
and N0 and N1 are the number of samples in classes 0 and 1, respectively.

3.3 Results and Discussion

MVIW using Han & Yu synthetic data. Following [5], the experimental
setting for evaluating MVIW feature subset stability consists in using each train-
ing set separately to pick the best subset of features of certain size. In particular,
given a normalized multivariate training set, the importance of every instance
is calculated according to Eq. 6. Then, this information is provided to a FS
strategy (Section 2.1) within an RFE process, while removing the worst 10% of
features per iteration until all of them have been eliminated. The procedure is
repeated for each training set, calculating the KI per feature subset size.

Fig. 2a shows the feature subset stability when SVM-RFE is applied. The
major increase in KI produced by MVIW (red square) compared to the Std-FS
(green circle), can also be achieved by setting the parameter C = 1/N without
any use of IW (black cross). Contrarily, if we apply MVIW with corrected scale
(blue asterisk) in order to assess the relative rating of instances, no significant
improvement in stability is appreciated.

Fig. 2b shows RelievedF-RFE with parameter k = 10 [5]. It can be observed
that incorporating MVIW (red square) presents virtually no gain in terms of
feature subset stability compared to regular FS –without instance weights (black
cross). For this setting, the correction of the scaling factor has not been plotted,
since it does not affect the result (Eq. 4). In light of these results, we conclude
that the improvement in subset stability is not caused by MVIW, but by the
scaling factor applied to parameter C as a side effect.
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(a) SVM-RFE
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Fig. 2: Feature subset stability on Han & Yu synthetic data. The plots show the
KI (vertical axis) over a set of RFE iterations (horizontal axis). For SVM-RFE,
green circle corresponds to parameters C = 1 and IW = none; blue asterisk:
C = 1 and IW = N ×MV IW ; black cross: C = 1/N and IW = none; red
square: C = 1 and IW = MV IW . In the case of RelievedF-RFE, black cross
corresponds to parameter IW = none; red square: IW = MV IW .

MVIW using microarray data. The previous effect has been verified in a
larger cohort of data by designing a set of experiments on real microarray data.
The same experimental settings as those stated in the previous section hold, with
the difference that every dataset is analyzed by a stratified 10-times 10-fold cross-
validation (10x10cv) resampling strategy, normalizing the data at every fold, in
order to generate training set variability. The KI is computed per feature subset
length at every inner 10cv and then computing the average over the 10 times.
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(d) Lung

Fig. 3: Feature subset stability using SVM-RFE on real microarray data. Each
plot shows the KI (vertical axis) over a set of RFE iterations (horizontal axis).
Green circle corresponds to parameters C = 1 and IW = none; blue asterisk:
C = 1 and IW = N ×MV IW ; black cross: C = 1/N and IW = none; red
square: C = 1 and IW = MV IW .
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(d) Lung

Fig. 4: Feature subset stability using RelievedF-RFE on real microarray data.
Each plot shows the KI (vertical axis) over a set of RFE iterations (horizontal
axis). Black cross: IW = none; red square: IW = MV IW .

According to both Fig. 3 and Fig. 4, excluding small variations at the very
last iterations, the same general trend expressed previously is maintained in all
of the microarray datasets, leading us to conclude that MVIW is of little use for
the aim of increasing feature subset stability.

5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Colon

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Leukemia

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Prostate

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Lung

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Breast

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Melanoma

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) Parkinson

Fig. 5: Feature subset stability using RelievedF-RFE on the microarray data.
Each plot shows the KI (vertical axis) over a set of RFE iterations (horizontal
axis). Red squares: standard (unweighted) FS; blue asterisks: RLIW.

3.4 Suitability of the proposed RLIW method

This section presents the experiments performed using our novel RLIW method
and the results obtained compared to the case where no IW is applied (Std-FS) in
terms of feature subset stability and prediction accuracy. Our strategy introduces
several improvements to the previous MVIW: first, a new approach for assessing
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the importance of each instance, as presented in Section 2; second, the weights
are re-computed at each iteration of the RFE process, based on the remaining
subset of features; third, the FS strategy of choice has been RelievedF-RFE,
discarding SVM-RFE, given the high computational demands derived from the
necessary optimization of the C parameter.

RLIW using microarray data. The experiments for microarray data have
been developed using a double 10-fold cross-validation resampling strategy. Be-
sides feature subset selection analysis, class predictions are obtained in the end
by using a linear SVM, setting the C parameter to the value obtaining the
best average balanced accuracy for the inner 10cv loop in a logarithmic scale.
The final subset of features is the one reaching maximum stability, among those
numbering less than 20% of the total number of features. The reported results
obtained by RLIW measure the outer 10cv feature subset stability (KI measure)
and are shown in Fig. 5; RLIW outperforms Std-FS across most RFE iterations
for the Colon, Leukemia, Lung, Breast, Melanoma and Parkinson datasets. The
Prostate dataset is an exception, for which we currently have no explanation
beyond some particularity of the dataset.

Colon Leukemia Prostate Lung

Std-FS 0.82 ± 0.05 (22) 0.97 ± 0.02 (40) 0.94 ± 0.02 (5) 0.98 ± 0.01 (1026)
RLIW-FS 0.79 ± 0.05 (22) 0.98 ± 0.02 (3) 0.92 ± 0.03 (1239) 0.97 ± 0.01 (19)

Breast Melanoma Parkinson

Std-FS 0.76 ± 0.05 (1026) 0.98 ± 0.02 (3) 0.78 ± 0.04 (1026)
RLIW-FS 0.66 ± 0.05 (1026) 0.97 ± 0.02 (187) 0.68 ± 0.05 (923)

Table 1: Average balanced accuracies and their standard errors on the microarray
datasets; feature subset size is shown in parentheses.

In addition, Table 1 presents the average BACs (and their standard errors) in
predicting the class labels of the outer loop 10cv test set instances. A price is paid
in terms of accuracy in exchange for the improvement in stability when using
Breast and Parkinson data; in the rest of the problems, comparable accuracy is
achieved.

RLIW using MRS data. The availability of a real test set allows to switch
back to a standard 10 times 10-fold cross-validation (10x10cv) resampling strat-
egy. This independent set has been used to properly validate the real difference
in accuracy when using RLIW. The results, shown in Fig. 6, indicate that a sim-
ilar performance can be achieved with more stable and smaller feature subsets.
It is also apparent that the estimated 10x10cv and test prediction errors are in
a better agreement using RLIW.
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10x10CV Test

STE
Std-FS (36) 0.62 ± 0.01 0.67 ± 0.07
RLIW-FS (17) 0.65 ± 0.01 0.68 ± 0.07

LTE
Std-FS (28) 0.62 ± 0.01 0.60 ± 0.08
RLIW-FS (15) 0.65 ± 0.01 0.60 ± 0.08

(c) Balanced Accuracies

Fig. 6: a) and b) Feature subset stability over 10x10cv. Each plot shows the KI
over the successive RFE iterations. Red squares: standard (unweighted) FS; blue
asterisks: RLIW. The table in c) shows balanced accuracies and standard errors
achieved by a linear SVM (number of selected features in parentheses).

4 Conclusions

The present work introduces RLIW, a new method for improving the stability of
feature subset selection algorithms. Its suitability for medical practice has been
assessed using data from two different environments: microarray gene expression
and magnetic resonance spectroscopy of brain tumours. The reported results
suggest a trade-off between prediction accuracy and feature subset stability. In
many problems, a similar prediction performance figure is obtained but showing
an increase in stability as measured by the Kuncheva index. In a few cases,
however, this increase comes at the expense of a significant drop in prediction
performance. We conjecture that, given the large dimensionality and the small
sample sizes, it may well be that previous results, obtained without little concern
for stability, are subject to large variability and thus rather optimistic in their
evaluation of performance. Future research will investigate deeper this issue, and
will evaluate the use of instance weighting into the learning algorithm itself.
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2. Somol, P., Novovičová, J.: Evaluating stability and comparing output of feature
selectors that optimize feature subset cardinality. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(11) (2010) 1921–1939

Proceedings IWBBIO 2014.  Granada 7-9 April, 2014 1264



12 Albert Vilamala and Llúıs A. Belanche
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