
 

 

Shape of a dilution curve as the consequence of 

stochasticity within microcirculation. 

Victor V. Kislukhin. 

viktork08@gmail.com 

Abstract.   
Introduction. There is a problem with commonly accepted parameters for 

microcirculation. This problem is due to many used mathematical models. The 
aim of notes to reveal that hypothesis about stochasticity of microflow leads to 
the uniqueness of mathematical equations for passage throughout microcircula-
tion. Thus stochasticity could be a motivation for the choice of parameters of 
microcirculation.  

Method. The passage throughout microcirculation is formed by next five 
events: (1) be in intravascular space, (2) be in extravascular space, (3) a mi-
crovessel is closed, (4) a microvessel is open, and also (5) a particle, being in 
open microvessel, experiences a variation of velocity. 

Result: Markovian property leads to a uniqueness of distributions of named 
events and (a) the first four events are exponentially distributed; (b) the distri-
bution of time to pass through open microvessels is infinitely divisible and is a 
gamma distribution. 

Keywords: Stochasticity, Microcirculation, Poisson distribution, Gamma dis-
tribution, Indicator dilution, Diffusion. 

1 Introduction.  

For central hemodynamic there are such parameters as cardio-output, central blood 
volume, heart/ventricular volume. The same time parameters for microcirculation are 
numerous. This is due to the many used math models.  For example, math models 
based on Krogh's model of oxygen exchange [1] ignore time and space heterogeneity 
of tissue perfusion [2], or calculations of endothelium permeability depend on as-
sumption (thus math model) of low/high permeability of used indicator [3].  In mod-
els used stochastic description [4,5,6] is shown that the rate of vasomotion influences 
consumption of O2, or permeability of endothelium can be estimated by the use of 
Goresky transform [7]. Thus we have a problem with parameters of microcirculation 
based on what should be a choice of math model.  

The main feature of microcirculation is its very irregular character of flow. Under a 
microscope can be seen that velocities of red blood cells are variable, including com-
plete interruptions of the flow. Variation of flow is partly due to vasomotion [8], and 
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also due to: “The variations in the properties of blood cells, random temporal fluctua-
tions of pressure, property of vessels wall” [9]. Thus it is plausible to assume stochas-
ticity of irregularities. 

Aim of notes is to reveal:  If we accept stochasticity in form of stationary Markov 
process [10] then the events that constitute the passage of any indicators have unique 
math equations.  

Thus we will have motivation for acceptance Goresky transform [11] as the tool 
for calculation permeability and the rate of vasomotion as criterion for state of micro-
circulation. 

 

2 Mathematical model of stochasticity within microcirculation.  

Next five events constitute the pass through microcirculation: (1) be in intravascular 
space, (2) be in extravascular space (for diffusible particles), (3) a microvessel is 
closed, (4) a microvessel is open, and (5) a particle, being in open microvessel, expe-
riences a variation of velocity.  

 

2.1 Notations for time.  

For not specific time will be used t. There are also three specific times: (1) an r is a 
time to pass through a microcirculation by diffusible particles; (2) an s is the transit 
time for intravascular particles; (3) T is the time that intravascular particles spent in 
open microvessels, thus leaving time s-T as a time to be in closed microvessels.  

 

2.2 Assumptions  

1. The passage of particles is a stationary markovian (process where past influence 
future through present) process. 2. Diffusing particles pass through intravascular 
space as intravascular particles do thus following the distribution of s.  
Consequently, r-s is the time that diffusing particles spend in extravascular space.  

 

2.3 Math equations for first four events.  

Assumed markovian property leads to exponential distributions for all four first 
events [10].  

List of distributions with characteristic parameters is as follow:   
1. Density of distribution to be in intravascular space is  

  ( )        (   )  (1) 
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with 1/δ as the mean time to be in vascular space before entering tissue.  
2. Density of distribution to be in extravascular space is  

  ( )        (   )  (2) 

with 1/γ as the mean time for a particle to be in the tissue before returning into blood.  
3. The time for resuming of flow has the density 

  ( )        (   )   (3) 

and 1/μ is the mean time for a resuming of flow.  
4. The time for microvessels to be open has the density  

  ( )        (   )  (4) 

where 1/β is the mean time for a microvessel being open. 

2.4 The 5
th

 event. The passage through open microvessels or a distribution for 

T.  

It will be shown that distribution of T, G(T), has as a density of a gamma distribution 
(5). The search for G(T) is based on the statement: G(T) is infinitely divisible [10]. To 
show this we follow to the next reasoning. In microcirculation due to the absence of 
inertia pressure gradient and velocity are instantly connected           [9]. Thus 
variations of pressure produce new velocities and also the variations of time to pass 
microcirculation. Now, if we divided each path within microcirculation on two about 
equal parts then the G(T) would become the convolution of two mutually independent 
distributions. Let denote them as G1/2(T). We can continue this procedure thus G(T) 
can be presented as convolution of any number of distributions. Thus G(T) is infinite-
ly divisible distribution.  

Laplace transform of any distribution, particularly G(T) is  ( )  

∫    (   )      
 

 
, and for infinitely divisible  ( )      (  ( )),with  ( )  

 ∫
      (   )

 
     

 

 
 and P(T) as probability distribution [10].  

Since there is sequence     such that   (  )

 ( )
        and with      

 (  )

 ( )
 

  

 (   )
          we can accept that g(λ) has regular variation [10]. Then to 

fulfill these conditions P(T) should be of the form: 1-exp(-aT). Thus G(T) has density: 

    ( )         
    (   )

 ( )
  (5) 

3 Equations of math model.  

Equations 1 through 5 are the "bricks" from which a model of the passage of diffusi-
ble or intravascular indicators is made. We start with the search for D(r,s), the condi-
tional (s is fixed) density of distribution to pass microcirculation by diffusible indica-
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tor. The need of randomization of D(r,s) by distribution of s, V(s),  ( )  

∫ (   ) ( )    lead us to the search for distribution to pass microcirculation by 
intravascular indicator. The search for V(s) is in two step: (a) obtaining conditional 
density of distribution, V(s,T), T=const, and (b) randomization of V(s,T) by distribu-
tion of T. Thus we have D(r) and V(s). 

 

3.1 The passage of a diffusing indicator.  

 Since time between two jumps out of vascular space has density of exponential dis-
tribution, equation (1), the n jumps during time s has a Poisson distribution    
   (   )

  
(  )  [10]. If a particle is not a consumable then appearance in tissue follows 

by returning into vasculature. Thus D(r,s) (with     (   )    if r=s and zero if r>s) 
is: 

 (   )  e p(   )  
  (   )  e p(   )∑

(  ) 

  
  

  (   ) 
    (6) 

Laplace transform of (6) with  ( )   
     

   
  is: 

 (   )  ∫    (   )  (   )    e p (   
     

   
)  e p(   ( )) (7) 

The (7) is a conditional Laplace transform. Now we need perform randomization of s 
in d(λ,s). The randomization of the expression (7) by distribution of s leads to the 
Laplace transform of the V(s) with the replacement of λ in    (   ) by (): 

 (   )  ∫    (   ( ))  ( )     (8) 

Thus our next step is to find the distribution for the s, V(s).  

3.2 An intravascular indicator. The search for V(s,T).  

The passage of an intravascular indicator is the composition of two processes (a) the 
change of the state of any microvessel, meaning that some closed microvessels be-
come open and vice versa, and (b) a variation of the time T to pass through open mi-
crovessels. We start with T fixed.  

Since time between two stops follows exponential distribution the probability of n 
stops is given by Poisson distribution,    

   (   )

  
(  ) . Every stop follows by 

resuming of flow. Thus we get a compound Poisson distribution for the transit time of 
an intravascular indicator with the density V(s,T), and     (   )     if s=T and 0, 
if s>T. 

 (   )  e p(   )  
  (   )  e p(   )∑

(  ) 

  
  

  (   ) 
    (9) 
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Laplace transform of (9) with  ( )   
     

   
 is: 

 (   )  ∫   (   )  (   )    e p (   
     

   
)  e p(   ( )) (10) 

Thus we have conditional Laplace transform for intravascular indicator. Now final 
step: to obtain unconditional distributions for diffusing and intravascular indicators.  

3.3 Unconditional distributions to pass through microcirculation.  

The randomization of T in ν(λ,T), equation (10), leads to Laplace transform for  
    ( ), only parameter λ is replaced by ():  

 ( )  ∫ e p[   ( )]    ( )     (   ( ))   (11) 

The unconditional Laplace transform for d() is obtained in two steps: (a) from d(,s) 
as conditional Laplace transform, is obtained d(,T), with fixed T:  

 (   )  ∫   (   ( ))  (   )    e p(   ( ( ))) (12) 

(b) From d(,T), by randomizing T with     ( ) is obtained d(): 

 ( )  ∫ e p[   ( ( ))]    ( )     (   ( ( )))   (13) 

It is possible to transform expressions (11) and (13) into corresponding distribution 
functions. However for all practical purposes is better to analyze Laplace transfor-
mation itself.  

3.4 Laplace Transform as the tool for investigations. 

For example let consider consumption/sequestration. Now λ is the denotation for in-
tensity of consumption. DP(λ) is a fraction of consumed indicator that passes through 
microcirculation. Since consumption takes place in the extravascular space, the time 
for consuming is r-s. If we assume that consumption follows to the first order differ-
ential equation, meaning that during time interval dr the fraction of consumed sub-
stance is λ [1] then:  

  ( )

  
    ( )    (   )      (  (   )) (14) 

where P(r-s) is the fraction of the substance still in the tissue and not consumed or 
sequestrated.  

Now we should take the distribution of (r-s) given by (6) and, after multiplication 
by (14), we get the conditional fraction of consumed indicator (the condition is fixed 
s): 

  (   )  ∫    (  (   ))  (   )    e p (   
 

   
) (15) 
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The randomization of s in (15), with  ( )   
 

   
 by V(s,T) leads to: 

  (   )  ∫    (   ( ))  (   )    e p (   ( )
     ( )

   ( )
) (16) 

As the final step, we should randomize DP(λ,T) by the distribution of T, see (5): 

  ( )    (   ( )
     ( )

   ( )
)
  

  (17) 

4 Discussion.  

There are many math models for blood flow throughout microcirculation. Particularly 
in use there are stochastic models. The comprehensive descriptions of stochastic 
models are given in [12, 13]. Application of stochastic approaches is based on the 
approximation of real dilution curves, meaning that parameters of chosen distributions 
become parameters of recorded curves. Such formal approach has problem with phys-
iological interpretation of model's parameters.  
In given manuscript, and this is its novelty, is shown that assumption of stochasticity 
leads to the uniqueness of math equations of model for blood flow. 
Since four basic events: (1) to be in extravascular space, (2) to be in intravascular 
space, (3) a microvessel is closed, and (4) a microvessel is open, due to markovian 
property, follow to exponential distributions, we have a very effective application of 
Laplace transform. The combinations of these processes become compound Poisson 
distributions thus the combinations have Laplace transform as    (    ( )). The 
randomization of t in    (    ( ))  by any distribution becomes Laplace transform 
of this distribution also, only λ is replaced by  ( ). 

 

5 Conclusion.  

From the assumption of stochasticity follows uniqueness of distributions that formed 
the passage of indicator through microcirculation. Thus exponential distributions and 
their generalization, gamma-distribution, become the motivations for introducing the 
permeability of endothelium and rate of vasomotion as characteristics of microcircu-
lation. 
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