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Abstract. Superficial bladder cancer is a significant public health prob-
lem with remaining challenges. Urologists need tools to accurately predict
the real evolution of the disease, that help them to improve treatment
modalities and follow-up schemes. Multi-state stochastic processes are a
convenient framework for modeling the process, and the statistical flow-
graph approach is an efficient tool to perform the task. In this paper this
approach is improved by incorporating covariates in the model.
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1 Introduction

Superficial bladder cancer (non muscle invasive bladder carcinoma, NMI-BC) is
a significant public health problem with remaining challenges. The macroscopic
tumor is usually removed from the interior of the bladder by means of a surgical
endoscopic technique (TUR, transurethral resection). However it has a notable
tendency to recur (30-85 %) and less frequently to progress to muscle invasive
stages (10-20 %).

Urologists need tools to accurately predict the real evolution of the disease,
that help them to improve treatment modalities and follow-up schemes. It is
necessary to go beyond EORTC tables [1], and indeed there is active research
[2].

Multi-state stochastic processes are a convenient framework for modeling
the process, and the statistical flowgraph approach [3] is an efficient tool to
perform the task. We successfully tested this methodology in a previous work
[4], and in this paper our aim is to incorporate covariates in the model. The
inclusion of covariates in the flowgraph analysis is recent [5]. Our model is based
on a database obtained from La Fe University Hospital of Valencia (Spain), that
records clinical-pathological information from 960 patients, followed between
January 1995 and January 2010.

The paper is organized as follows: in section 2 we review a few basic concepts
of survival analysis, phase-type distributions and Erlang distributions, needed

? corresponding author.
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2 Flowgraph model for bladder carcinoma

to build the model. In section 3 we present the essentials of flowgraph models.
Section 4 contains the model, and finally, in section 5 some discussion is given.

2 Survival analysis and phase-type distributions

2.1 Survival analysis

Survival analysis techniques deal with the analysis of data related to elapsed time
from a well-defined time-origin until the occurrence of some particular event or
end-point.

Let T be the random variable associated with the survival time (time until
the ocurrence of the event). The Survival Function is

S(t) = P(T ≥ t) = 1− F (t)

where F (t) is the distribution function of T. It expresses the probability that an
individual survives (that is, does not undergo the occurrence of the event) from
the time origin to some time beyond t.

The Hazard Function is given by

λ(t) = lim
∆t→0

P( t ≤ T < t+∆t |T ≥ t)
∆t

,

what expresses the hazard rate or the instantaneous event rate.
In survival analysis data are frequently censored [6], what means that the

event of interest has not been observed. The time of follow–up of those patients
must be taken into account, because it informs us of the fact that the individual
was free of event until the present moment.

2.2 Phase-type and Erlang distributions

To modelize lifetimes, mixtures of distribution functions are useful. In this re-
gard, phase-type distributions [7] are quite interesting, because they provide
computations with manageable analytical expressions.

The distribution F (·) on [0,∞[ is a phase–type distribution (PH-distribution)
with representation (α, T ) if it is the distribution of the time until absorption in
a Markov process on the states {1, . . . ,m,m+ 1} with generator(

T T 0

0 0

)
,

and initial probability vector (α, αm+1) where α is a row m-vector.
The matrix T of order m is non-singular with negative diagonal entries and

non-negative off-diagonal entries and satisfies

−Te = T 0 ≥ 0,

where e denotes a column vector with all components equal to one.
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Flowgraph model for bladder carcinoma 3

The distribution F (·) is given by

F (t) = 1− α exp(Tt)e, t ≥ 0 (1)

and the density by

f(t) = α exp(Tt)T 0. (2)

The survival function is

S(t) = α exp(Tt)e (3)

and the hazard function is given by

h(t) =
α exp(Tt)T 0

α exp(Tt)e
.

The Laplace transform is

f(s) = αm+1 + α(sI − T )−1T 0, forRe(s) > 0. (4)

A particular case of phase-type distribution is the Erlang distribution, which
is the basis of our model. An Erlang distribution E[r, λ] has a representation
(α, T ) as a phase-type distribution [8]:

α = (1, 0, . . . , 0)1×r

T =


−λ λ
−λ λ

. . .
. . .

−λ λ
−λ


r×r

Phase-type distributions are a closed class for finite mixtures, and form a class
weakly dense in the class of general distributions defined on the positive real line.
A finite mixture of Erlangs distributions is therefore a phase-type distribution.
We utilized the class of mixtures of three Erlang distributions studied in [9]. The
distribution function of the elements in this class is given by the expression

G(t) = p1F1(t) + p2F2(t) + p3F3(t), (5)

with p1 + p2 + p3 = 1, pi > 0, i = 1, 2, 3.

Let us denote the three Erlangs by E[r1, µ1], E[r1, µ1], E[r1, µ1], with µi > 0
and ri a positive integer, i = 1, 2, 3. Based on [9], we will consider the particular
case with r1 = 1, r2 = 3, r3 = 5. Its representation as phase-type distribution is
(α, T ) where

α = (p1 p2 0 0 p3 0 0 0 0) (6)
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4 Flowgraph model for bladder carcinoma

T =



−µ1 0 0 0 0 0 0 0 0
0 −µ2 µ2 0 0 0 0 0 0
0 0 −µ2 µ2 0 0 0 0 0
0 0 0 −µ2 0 0 0 0 0
0 0 0 0 −µ3 µ3 0 0 0
0 0 0 0 0 −µ3 µ3 0 0
0 0 0 0 0 0 −µ3 µ3 0
0 0 0 0 0 0 0 −µ3 µ3

0 0 0 0 0 0 0 0 −µ3


(7)

3 Flowgraph models

A flowgraph model is a graphical representation of a multistate model, that
consists of directed line segments (branches) connecting the states. The branches
are labeled with transmittances, that are the multiplication of the transition
probability pij from state i to state j and an integral transform. This transform
can be a characteristic function (CF), a moment generating function (MGF), a
Laplace transform (LT), or even an empirical transform [5], [10].

In this paper we deal with the flowgraph of Figure 1, that represents the
three-state illness-death model.

 

 

 

 

 

 

  

1 

0 2 

P01·M01(s) P12·M12(s) 

P02·M02(s) 

Fig. 1. Three-state illness-death model.

Transmittances are combined according to a systematic procedure (see [3],
section 2.5), in order to compute the transforms for the transitions of interest.
To manage the graph in Figure 1 only the following rules are needed:
1) The transmittance of transitions in series is the product of the series trans-
mittances.
2) The transmittance of transitions in parallel is the sum of the parallel trans-
mittances.
By applying these rules, the integral transform of the transition of interest is
computed. The final step is to invert this transform to recover the probability
density function (PDF) of the transition.
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Flowgraph model for bladder carcinoma 5

4 A flowgraph model for bladder carcinoma with
covariates

4.1 Data

The database contains detailed information of patients with NMIBC, obtained
from La Fe University Hospital of Valencia (Spain). Data were collected on 960
postoperative patients, between January 1995 and January 2010, with patient
characteristics and pathological details. We will distinguish between clinical char-
acteristics of the tumor (number of tumors and size of the tumoral mass), and
pathological characteristics (grade and stage). The stage of the bladder tumors
is classified in Ta and T1 (corresponding to superficial bladder tumors accord-
ing to TNM system classification [11]). Grade is categorized from G1 to G3
(from low aggressive to highly aggressive) according to the WHO (World Health
Organization [12]). These clinicopathological data were collected when the pri-
mary NMIBC was diagnosed and a transurethral resection of the bladder tumor
(TURB) was conducted. Also, the variables Sex and Age were collected at the
moment of the TURB. Number was classified in two levels: one and multiple
tumors. Size has also two levels: less or equal to 3 cm and more than 3 cm.
Characteristics of patients are provided in Table 1.

Patients were followed up every three months during the two first years,
every six months between the second and fifth years following diagnosis, and
then annually with a minimum follow-up time of ten years. The mean follow–up
time for the entire cohort was 3 years and 11 months. The data record several
recurrence times. This means that some patients have no recurrence at all, some
have one or more recurrences, and some have progression (directly of after some
recurrence). In our model we have considered progressions and one recurrence.
As stated above, 434 patients underwent a recurrence, 24 a progression, and
499 had censored times. Then, 63 patients were lost. From the remaining 371
patients, 17 underwent a progression. Times of the remaining 354 patients were
considered censored.

The joint evolution of the two processes (recurrence process and progres-
sion process) was modelled by means of a non-parametric penalized likelihood
method for estimating hazard functions in a general joint frailty model for re-
current events and terminal events in [13]. In this work, four variables (age,
grade, number and size of the tumor) were obtained as significant covariates in
the recurrence process so these variables are used to fit transition 0-1. In the
progression process three variables were obtained as significant: age, stage and
grade, these variables are used to fit transitions 0-2 and 1-2.

4.2 Flowgraph model

In [4] parametric distributions were computed for the flowgraph of Figure 1,
in the context of our model for bladder carcinoma. State 0 corresponds to the
patient free of disease, after the TUR of the primary tumor. State 1 is the first
recurrence, and state 2 is progression. Time is given in years.
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6 Flowgraph model for bladder carcinoma

Variable patients %

Sex
Men 838 87.3
Women 122 12.7
Age
≤ 66 years 429 44.7
> 66 years 464 48.3
Missing 67 7
Stage
Ta 287 29.9
T1 650 67.7
Missing 23 2.4
Grade
G1 373 38.9
G2 392 40.8
G3 171 17.8
Missing 24 2.5
Number
One 577 60.1
Two or more 168 17.5
Missing 215 22.4
Size
≤ 3 cm 609 63.4
> 3 cm 222 23.1
Missing 129 13.4

Table 1. Patient and tumor characteristics.
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Flowgraph model for bladder carcinoma 7

Once the parametric distributions have been computed, the Laplace trans-
forms are easily calculated from (4). Then we compute the Laplace transform
relevant to the transitions of interest, applying the above rules. Our interest is
to model the overall risk of progression. So we aim to find the probability distri-
bution of time to reach state 2 for the first time starting in state 0, irrespective
of the path that was taken. That is to say, the first passage distribution of going
from disease free to muscle invasive stages.

The application of rules 1 and 2 is the same as in the case without covariates.
So the Laplace transform would be given by:

LT (s) = p01p12LT01(s)LT12(s) + p02LT02(s).

However, it must be taken into account that our flowgraph is actually part
of a more general graph that would model the disease process, see Figure 2.
Passage from state 0 to state 2 is not certain to occur: a patient may only suffer

Fig. 2. Recurrence – progression process.

recurrences, or even no recurrence. The probability of taking the considered path
is p01p12 + p02, and we must divide the preceding LT (s) by this probability to
obtain the true Laplace transform [3, pag. 19]

LT (s) =
p01p12LT01(s)LT12(s) + p02LT02(s)

p01p12 + p02
(8)

Probabilities pij are assigned from estimations based on our data. They sim-
ply consist of the ratios between the number of progressions or recurrences
and the number of patients who could undergo the relevant transition. Cal-
culations are quite sensitive to these values. We tried with the current and
also previous database. The best results were obtained taking p01 = 0.3967742,
p02 = 0.02507837 and p12 = 0.03252033.

The final step is to invert these transforms to obtain PDFs, for which we use
an inversion algorithm called EULER, developed by Abate and Whitt [14], in
the version provided by [15].
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8 Flowgraph model for bladder carcinoma

4.3 Incorporating covariates

The starting point is the parametric distribution for each transition, obtained
without taking into account covariates. They are of the form (6)-(7), with dif-
ferent parameters pi and µi. The approach of [16] suggested us to incorporate
covariates by multiplying each µi by exp(XBT ), where X is a vector with the
covariates of a patient and B a vector of coefficients. Thus the influence of co-
variates on the distributions will consist in modulate their shape through the
variation of the values of these parameters in the phase type distributions.

From expression (2) the PDFs are easily obtained, and we can make up the
likelihood function. The general expression is provided in [5], from which the
suitable function for our model is L = L0L1, where L0 and L1 are computed as
follows.

Let Sjk be the set of observation indices in transition j-k, and Sj∗ the index
set of observations censored in state j. Let fjk the waiting time density associated
with transition j-k, and tjk,i the observed time for patient i. Then

L0 =

[
2∏
k=1

∏
i∈S0k

p0kf0k(t0k,i)

]
×

 ∏
i∈S0∗

(1− F0(t∗0,i)


where t∗0,i is the observed censoring time in state 0 for the observation i and F0

is the cumulative distribution function corresponding to the mixture density

f0(t∗0,i) =
2∑
k=1

p0kf0k(t∗0,i).

And, with the obvious meaning for t∗1,i

L1 =
∏
i∈S12

p12f12(t12,i)×
∏
i∈S1∗

(1− F1(t∗1,i)

where F1 is the cumulative distribution function corresponding to

f1(t∗1,i) = p12f12(t∗1,i).

The parameter values are obtained by minimizing −logL, using as seeds the
zero value for each parameter (which corresponds to the no covariate case).

Therefore we can perform the distribution function and all the other functions
in each transition for any group of patients with particular values of covariates.
For instance, in Figure 3 the empirical and model distributions corresponding
to transition 0-1 are shown for the group of patients with the following initial
characteristics: one tumor, stage T1, grade G2, smaller than 3 cm, and more
than 66 years old. Then the Laplace transform for the transition that we are
interested in, is computed from equation (8). From this function we obtain the
survival function (with regard to progression) for this particular group. The plot
is shown in Figure 4, and jointly with the empirical function in Figure 5.

All computations were made in R [17]. We used Stats [18], expm [19], Matrix
[20] and survival [21] packages.
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Fig. 3. Erlang mixture (smooth line) and empirical distribution (step function) for
transition 01.
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Fig. 4. Survival function obtained from the model.
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Fig. 5. Survival function model (smooth line) and empirical survival function (step
function).

5 Discussion

The Erlang distributions approach let us incorporate covariates in a relatively
simple manner. Computations are quite tractable combined with the flowgraph
methodology. The next step in order to a successful modelling would be to take
into account multiple recurrences. This question has been discussed in [5], but in
our case there is an important difficulty: the succesive recurrences in the same
individual are not actually independent events, and therefore the approaches
from [5] can not be fully taken into account.
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