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Abstract. In this work we study variable-significance in classification using the 
Random Forest proximity matrix and local Importance matrix. We use the prox-
imity m atrix t o g roup t he s amples acr oss a number of  c lusters a nd use t hese 
clusters to  s tratify th e importance of a  variable. We apply t his a pproach t o a 
cardiovascular g enotype d ataset f or sample classification b ased o n coronary 
heart disease and we found a number of variations related with cardiovascular 
disease phenotypes. We also used a set of phenotypes related with this genotype 
data to match the obtained clusters with coronary heart diseases phenotypes.  

Keywords: Random Forest, Proximity Measure, Feature Importance, Genetic 
Data Analysis, Machine Learning 

1 Introduction 

According t o the World H ealth O rganization ( WHO), c ardiovascular d iseases 
(CVD) are globally the most significant cause of death [1]. CVD risk can be predicted 
based in a set of factors (age, sex, obesity, d iabetes, b lood pressure, etc.) [2]. How-
ever, these risk factors do not fully explain these diseases. Using genetic association 
studies, some genetic biomarkers have been identified as risk factors of cardiovascu-
lar diseases [3]. The identification of these genetic risk factors could help to explain 
the aetiology of CVD and could also be used as targets for new drugs. 

In order to find these genetic b iomarkers, single association tests are usually per-
formed. However, some machine learning techniques have also been used in the last 
few years for the same purpose. Some o f t he most p romising r esults have been ob-
tained using techniques which can deal with high dimensional datasets, such as Sup-
port Vector Machines [4] or Random Forest [5, 6].  

Random Forest (RF) was proposed by Breiman [7], and has been used in the last 
years in genotype analysis, because of its good performance with high dimensional 
datasets. A good review of the use of Random Forest methods in the life sciences can 
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be found in [8]. One of the important features of Random Forest is the possibility of 
obtaining a set of descriptive measures, in addition to the classification model. These 
descriptive measures i nclude the proximity matrix and the local importance matrix. 
Once Random F orest has b een t rained, the p roximity matrix q uantifies s ample-
similarity. The proximity between two samples is calculated by measuring the number 
of times that these two samples are placed in the same terminal node of the same tree 
of RF, divided by the number of trees in the forest. On the other hand, the local im-
portance matrix measures the importance o f each feature in each sample. T his local 
importance m atrix is cal culated v ia t wo methods. F irstly via t he Gini i mportance 
which measures the t otal increase of i mpurity in a v ariable, when this variable h as 
been s elected f or s plitting. S econdly, vi a the p ermutation i mportance, which is t he 
mean d ecrease i n accuracy f or a predictor v ariable, cal culated as  t he p ercentage o f 
correct votes for the correct class in the permuted Out of the Bag (OOB, internal vali-
dation dataset) samples subtracted from the percentage of correct votes in the original 
OOB samples.  

In this paper we use these two characteristics of Random Forest (local importance 
and proximity values) to obtain a descriptive model which indicates which f eatures 
are most important for classification. We use the proximity matrix in order to obtain a 
set o f cl usters, i dentify the most i mportant f eatures o f e ach cluster, using the l ocal 
importance matrix, and map these clusters to a phenotype using principal component 
analysis. Some authors [9] [10] have applied RF for cluster discovery in the life sci-
ences where the Random Forest was trained without independent variables. However, 
we propose a semi-supervised approach, which detect clusters that arise in a classifi-
cation of genetic data in Coronary Heart Disease (CHD) and control data. 

2 Material and Methods 

2.1 Data 

We used data from the British Women’s Heart and Health Study (BWHHS) cohort 
study, composed of 4286 health women aged 60-79 years at baseline [11]. A range of 
baseline d ata ( blood s amples, a nthropometry, health/medical h istory, ech ocardio-
graphic measures, etc.) were collected between 1999 and 2001, and DNA extracted 
from 3884 pa rticipants. Genotyping was pe rformed us ing the I llumina HumanCVD 
BeadArray (Illumina Inc, San Diego, USA), which comprises nearly 50,000 SNPs in 
over 2,000 genes selected on the basis of cardiovascular candidacy [12]. Samples with 
a genotype cal l rate <90%, Hardy Weinberg disequilibrium < 1 E-7 and minor a llele 
frequency < 1 % were excluded from t he a nalysis. T he d ifferent p henotypes used i n 
this study co nsisted o f 1 1 directed and d erived el ectrocardiogram ( ECG) measures, 
obtained as  d escribed in [13], 63 bl ood measures, 2 blood pressure readings, 3 a n-
thropometric measures and an indicator of whether a  patient has suffered coronary 
heart disease (CHD). These data were measured as described in [11]. Phenotypic data 
were transformed t o a l ogarithmic scale. B oth s caled and unscaled p henotypic data 
were normalized to zero mean and unit variance.  
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In or der t o r emove Linkage Disequilibrium effects i n the genotypic d ata, S NPs 
with correlation higher than 0.75 were removed from the study. We also removed all 
SNPs with no association with CHD, for which we consider as threshold an optimistic 
association p-value of 0.1. We used linear regression between the genotype and CHD 
variable in  P-link [14]  in or der t o get t hese association p -values. A total of  1854  
SNPs and 128 phenotypes from 3428 samples were used in this study. 

2.2 Study design 

A Random Forest implementation in R (http://cran.r-project.org/), “randomForest” 
was used in this study. The objective is to identify different clusters of cardiovascular 
genotype i n t he or iginal da ta. I n or der t o obtain t his, a  R andom F orest model was 
built, with genotype data as input and a measure indicating if the patient has suffered 
coronary heart diseases, as a binary outcome.  

This b inary c lassification dataset is  h ighly imbalanced. RF does not achieve best 
performance with i mbalanced datasets when the classification accu racy is biased to 
the bigger class. In order to remove this bias, some strategies have been proposed [15, 
16]. We followed a subsampling approach; where for each built tree, the algorithm 
selects all samples of lower class, and randomly selects the same number of samples 
of the bigger class. 

Following Breiman, a d efined main p arameter for R F is the n umber o f features 
which each new tree selects randomly for classification, given as mtry in “random-
Forest” p ackage. A cross-validation s cheme was used to obtain this p arameter. We 
finally selected an mtry of 45. 

We also ran several experiments to select the p roper number of  t rees for the RF. 
Graphically we observed that the results doesn’t improve significantly when the num-
ber of trees was bigger than ~2500, so we selected a conservative number set of 3000 
trees. 

The literature on Random Forest covering the proximity and local importance ma-
trix suggests that there could be some variation in both matrices because of the sto-
chastic nature of the RF model, which randomly selects a set of features to build each 
tree. These authors [8, 17] recommend running several models and taking some aver-
age or proportion of the values from each model. Following these recommendations, 
we ran 20 RF models and obtained the median of both matrices.   

As we mention in the Introduction, Breiman’s Random Forest implementation pro-
vides t wo t ypes o f i mportance m easures. H owever, t he Gini V ariable I mportance 
index showed artificial inflation of feature importance depending o n the number of 
categories for each variable [18], repeated also in genetic data depending on the minor 
allele f requency o f each  S NP[19]. S o we  will use t he pe rmutation i ndex bot h f or 
global and local variable importance. In order to normalize the variable importance, 
we divide it by the standard error of each variable, obtained from the parameter “im-
portanceSD” from the model.  

We built an aggregation of all proximity matrices calculating the median of all the 
proximity matrices obtained from the 20 RF models. In order to understand this prox-
imity matrix, we b uilt a  d istance matrix, a s 1 -proximity measure, f or all pr oximity 
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pairs. T hen, we p erformed a m ultidimensional s caling [20] on this d istance matrix 
using t he R  f unction “ cmdscale” f rom the “ stats” R  p ackage i n o rder t o obtain t he 
three pr incipal c oordinate c omponents t hat was pl otted us ing the cloud pl ot of  R 
package “lattice”. 

In o rder t o c luster t he samples u sing these p rincipal co ordinate co mponents, we 
used hierarchical clustering (hclust from R package “stats”) using the Euclidean dis-
tance between the sample components.  

The local importance matrix stores the permutation importance of each feature in 
each s ample cl assification. I n o rder t o o btain t he most i mportant f eatures f or each  
cluster, we obtained the mean of the variable importance samples in each cluster.    

With the groups and the phenotype data we performed PCA analysis using the R 
package “F actoMineR” [21] in o rder to  o btain th e most i mportant p henotypes f or 
each cluster. Using this package we can obtain a graphical representation of samples 
grouped by clusters and also a graphical representation of each phenotype. In order to 
obtain the different distributions of phenotypes between two clusters we use the Kol-
mogorov-Smirnov test, provided in R package “stats”. 

3 Results 

The Random Forest algorithm used around a  third of the samples, named Out of  
the Bag (OOB) samples, for validation purposes. The algorithm trains with the other 
two-thirds of t he s amples a nd u ses O OB s amples t o c alculate e rror, pr oximity a nd 
local importance values. To ensure the capability of this particular scheme and dataset 
for classification, we ran a 10-fold cross validation study. In this study, we randomly 
separated the samples into ten folds, ensuring that all folds have the same proportion 
of positive samples. Then a RF model was trained with 9 of these 10 folds (using two-
thirds of samples of these 9 folds for training and the rest for OOB validation) and the 
last fold was used for calculate the performance of the classifier. This procedure was 
repeated 10 times so that each fold was using the va lidation fold once. This 10-fold 
cross validation process was repeated 10 times to remove fold sample selection bias. 
We us ed a  t-test t o ch eck t he significance o f t hese results. U sing t his validation 
scheme, the model reached a test error of 0.3198 ±0.0095 in test folds with a confi-
dence i nterval o f (0.2948-0.3448) a t 95% c onfidence l evel. T his r esult s hows t hat 
using only genetic data, the RF model has predictive capability.  

However, the main objective of this paper was not to probe the prediction capacity 
of t he RF, b ut the other important measures of t he R F m odel are useful f or model 
interpretation, namely the proximity matrix and the importance values. Unfortunately, 
the cross validation scheme cannot be used for this purpose. Although the proximity 
matrix can be calculated from the final training model using a different dataset (using 
the prediction function of the “randomForest” package), the local importance matrix 
needs to be calculated using only the OOB samples. This is the reason why all sam-
ples were used to build the final models. As pointed in the Section 2, 20 R F models 
were built to remove the possible deviation in the importance and proximity matrix. 
The m ean cl assification e rror r esults o n OOB s amples i s 0. 273 ± 0.0068, ( 0.2705-
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0.2769) at 95%. This result improves the cross validation error, which shows some 
overtraining by disregarding the cross validation. 

As the next step we studied the importance of the variables for all the 20 RF mod-
els. Each model has slight differences in the variable importance, so we take the mean 
of all of them to get a combined value. 

 
Fig. 1. Permutation based I mportance measure for al l variations. Names o f t he genes r elated 
with variations with importance greater than one is plotted in red. 

In Figure 1 we plot the most important features for classification using the permu-
tation variable i mportance ap proach. T here ar e t wo main important features, S NPs 
rs1375144 and rs17108202, in genes DPP10 and LRP8 respectively, with an impor-
tance around 3 or bigger. The Figure also gives the names of the genes with an impor-
tance bigger than 1.  

During the next stage of the study we calculated the aggregate proximity matrix of 
all 2 0 R F models, ta king t he median o f t hese values. T he r esult i s a  3 428 x 3 428 
symmetric matrix representing the similarity of each pair of two samples. In order to 
visualize the proximity matrix, the randomForest package uses the function MDSplot. 
Following the same scheme, we calculated the distance of the proximity matrix and 
the multidimensional scaling values of this matrix.  

The result is shown in Figure 2 as a 3D plot of the distances. Each point represents 
one sample, a nd the higher the values i n the proximity matrix, the closer are these 
points in the plot. This plot shows 8 clear clusters, which corresponds to the 8 most 
important groups in terms of the proximity matrix.  

We used a hierarchical clustering algorithm of the components of the multidimen-
sional scaling to obtain the exact classification of each sample. 
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Fig. 2. 3D scatter pl ot of t he c oordinate c omponents of  t he multidimensional s caling of  t he 
proximity matrix.  

Figure 2 also shows how clusters are correlated with the categories of samples with 
CHD and controls, upper clusters correspond to CHD samples, while the bottom clus-
ters correspond to controls. That means that the first distance component of the prox-
imity matrix is able to distinguish control from disease. This perfect classification is 
due t o t he use o f al l s amples (not on ly OOB samples) for obt aining the p roximity 
matrix. Using only OOB samples we obtained similar clusters, but some misclassifi-
cation in terms of CHD/control. 

In the next step we used the local importance matrix to discover which features are 
most important in each of the clusters. 

In Table 1 we show the most important features for each cluster, as the mean of the 
local importance matrix of each feature in the samples belonging to each cluster. 

Table 1. 15 most important variants and variant importance score for each cluster 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
DPP10 35.42 LRP8 139.11 LRP8 34.93 ATF6 23.54 
LRP8 30.86 ATF6 27.18 ATF6 32.86 GAL 23.43 
ATF6 24.91 CCL24 24.77 IL1RN 29.36 CCL24 22.97 
ATF3 23.81 MAT2B 22.72 LIPG 28.74 IL1RN 22.92 
IL1RN 23.11 IL1RN 22.55 CAV3 27.45 ATF3 22.41 

PLA2G4F 22.47 PLA2G4F 21.94 C1QA 26.96 ATF3 22.22 
MAT2B 22.23 GCK 21.44 MAT2B 25.99 MAT2B 22.13 
CCL24 22.16 APP 21.17 PRKAG2 25.86 BID 22.02 
LIPG 20.17 GAL 21.09 ERP44 25.66 APP 21.97 
LGR5 19.68 ATF3 20.39 ELP4 24.95 LGR5 21.10 
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MAT2B 18.76 MYH3 19.78 MYOCD 24.09 PLA2G4F 20.15 
Cluster 5 Cluster 6 Cluster 7 Cluster 8 

DPP10 299.96 DPP10 33.57 GPR98 65.16 DPP10 301.66 
GAL 26.87 CCL24 26.48 IL1F10 64.50 LRP8 141.30 

MAT2B 25.59 ATF6 26.35 LRRFIP1 64.07 ATF6 29.60 
ATF6 23.43 MAT2B 25.74 MAT2B 62.35 LGALS9 26.28 

TNFRSF11B 23.38 GPR98 23.00 GPR98 61.95 C20orf160 25.89 
MYH3 22.77 LGR5 23.00 EGFR 58.74 GAL 24.83 

C20orf160 22.20 TAP2 22.99 OSBP2 54.86 PCSK4 23.90 
BID 22.19 CAV3 22.56 CDKAL1 54.18 CSF1 23.72 

CCL24 21.36 SOD2 21.62 HAT1 52.90 IPCEF1 23.63 
ATF3 21.35 ATF3 21.49 RUNX1 49.57 IL1RN 23.58 
IL1B 21.10 ACAN 20.97 SORCS1 49.48 MAT2B 22.88 

 
This T able shows that t he most i mportant v ariables r s1375144 a nd r s17108202 

(those related with genes DPP10 and LRP8) represents the 2nd and 3th distance com-
ponent in the f igure 2 . Clusters black and gray present higher importance of DPP10 
and LRP8, clusters green and red higher importance of LRP8 and clusters cyan and 
magenta higher importance of DPP10. Analyzing this in terms of genotype values of 
these two SNPs, clusters black and blue are defined by the wild allele of both SNPs, 
clusters yellow and grey are defined by a rare variant of both SNPs, cluster red and 
magenta are defined by a rare allele of rs17108202 and wild allele of rs1375144 and 
clusters cyan and green are defined by a rare allele of rs1375144 and a wild allele of 
rs17108202.   

In order to find which variants distinguish between the same DPP10 and LRP8 pat-
terns i n the two cl uster p airs, we an alyzed the significant differences between t he 
importances of these variants in each pair of clusters. 

For the black and blue cluster pair, genes DPP10 (wild), LRP8(wild), GAL, APP, 
GCK, ATF3 a nd S OAT2 a re r elated with CHD a nd G PR98, M AT2B, A CAN a nd 
LIPG with controls. 

For the red and magenta cluster pair, genes DPP10, GAL, SOD2, APP and GCK 
are related with CHD, while LRP8(rare), GPR98, LIPG and S100A9 with controls. 

For the green and cyan clusters, genes LRP8, GCK, APP, GAL, BID and ABCG1 
are related with CHD and DPP10 (rare), GPR98, PDE1A and NPHS2 with controls. 

In the case of clusters grey and yellow, we cannot obtain any reliable information 
because the yellow-labelled cluster has only 3 samples. 

In the final stage of this study we compared the phenotypes of each cluster. In or-
der to do this, we performed a principal component analysis of phenotypes. 

In Figure 3 we show the principal components of the phenotypes in the left and the 
principal components of the samples in the right. We have removed the samples and 
plot only the centre of the samples of each cluster, representing the centroid of t he 
class. 
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Fig. 3. Variables factor map of the phenotypes and groups.  

 
Fig. 4. Variables factor map with significant phenotypes for cluster 1 (panel top left), cluster 2 

(top right), cluster 3 (bottom left) and cluster 4 (bottom right) 
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We can observe how the groups at the bottom right correspond with CHD groups 
and the groups in the upper left correspond with control. In terms of phenotypes, con-
trols correlates with HDL cholesterol and CHD with phenotypes such as Von Wille-
brand Factor, Factor IX, white blood cell count, BMI, etc. 

In Figures 4 and 5 we show only the phenotypes for each cluster which are differ-
ent statistically from the others using Kolmogorov-Smirnov test.  

Figure 4  s hows that c luster 1  (black) is p ositively c orrelated with white bl ood 
count, tissue plasma activator, Von Willebrand Factor, Factor IX, BMI, glucose, insu-
lin, D-Dimer, C-reactive protein and IL6,  a nd negatively correlated with HDL cho-
lesterol. Cluster 2 (red) is positively correlated with HDL cholesterol and height; and 
negative correlated with phosphate, urea, fibrin clot, QTC interval and Cornell index. 
Cluster 3 (green) is  correlated with C-reactive protein, Factor IX and fibrin clot and 
Cluster 4 (blue) is correlated positively with HDL cholesterol, C vitamin and height; 
and ne gatively with d iastolic bl ood pr essure, white b lood c ount, glucose, i nsulin, 
Factor IX, tissue plasma activator IL6 and C-reactive protein. 

Figure 5 shows how cluster 5 (cyan) is positively c orrelated with mean cell vol-
ume, phosphate, he ight; and negatively with LDL cholesterol, QT interval, QTC in-
terval, Cornell index and QRS voltage product. Cluster 6 (magenta) is positively cor-
related with white blood count, tr iglycerides, insulin, fibrin clot, IL6, BMI, QTC in-
terval, Q RS duration, Cornell Index, Cornell P roduct, QRS vo ltage p rod; and ne ga-
tively correlated with HDL cholesterol, C vitamin and height. Cluster 7 (grey) is cor-
related with lymphocytes and Sokolowin Index. Note that there are only 3 samples, so 
these results are not significant. Finally, cluster 8 (yellow) is correlated with platelets, 
neutrophils, potassium, plasma viscosity and magnesium. 

3.1 Discussion 

The model we have derived for classifying CHD samples in genotypic data shows 
the importance of a s et of SNPs, lead by SNPs rs1375144 and rs17108202 in genes 
DPP10 an d LRP8. Variants in DPP10 h ave been related with H DL cholesterol and 
inflammation [22], blood pressure [23], s troke [24] and variants i n LRP8 ha s b een 
associated with p remature myocardial i nfarction r elated to  p latelet a ctivation [25, 
26]and triglycerides [27]. These variants do not really distinguish between CHD and 
control, but seems to have some importance in the stratification for further classifica-
tion, because of the different variable importance pattern in each cluster.  

Further replication in other cohorts is needed to ensure the ability of this model to 
confirm that the most important variations can be reliably related to coronary heart 
diseases. 
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Fig. 5. Variables factor map with significant phenotypes for cluster 5 (panel top left), cluster 6 
(top right), cluster 7 (bottom left) and cluster 8 (bottom right) 

4 Conclusion 

In this work we show that the combination of the Random Forest proximity matrix 
and l ocal i mportance matrix c ould h elp t o understand classification r esults using 
groups from variable importance stratification. We used the proximity matrix to clus-
ter th e s amples i nto eight groups b ased i n t he d istances between t he samples. W e 
prove, using the local importance matrix, that this clustering is lead by the two most 
important SNPs in two of the components, and a combination of other SNPs. Using 
phenotype data and PCA, we found the most important matching phenotypes for each 
cluster. 
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In future work, we will explore deeper levels of clustering in order to identify clear 
phenotype profiles and associate them with a g enotype in addition to  replicating the 
variable importance other cohorts.   
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