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Abstract. We assess the accuracy of various state-of-the-art methods
for reconstructing gene and protein regulatory networks in the context
of circadian regulation. Gene expression and protein concentration time
series are simulated from a recently published regulatory network of the
circadian clock in A. thaliana, which is mathematically described by a
Markov jump process based on Michaelis-Menten kinetics. Our study
provides relative network reconstruction accuracy scores for a critical
comparative performance evaluation, quantifies the influence of system-
atically missing values related to unknown protein concentrations and
mRNA transcription rates, and investigates the dependence of the per-
formance on the network topology and the degree of recurrency. An ap-
plication to recent gene expression time series from qPCR experiments
suggests new hypotheses about the structure of the central circadian gene
regulatory network in A. thaliana.
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1 INTRODUCTION

The ultimate objective of systems biology is the elucidation of the regulatory
networks and signalling pathways of the cell. The ideal approach would be the
deduction of a detailed mathematical description of the entire system in terms
of coupled non-linear differential equations. In fact, in the last few years, sub-
stantial progress has been made to model the central processes of a variety of
regulatory networks [1, 2, 3, 4, 5]. However, due to the complexity of the un-
derlying systems of coupled differential equations, proper statistical inference is
extremely challenging. Consequently, there are substantial differences and incon-
sistencies among published gene regulatory networks of biological model systems,
as demonstrated e.g. in [6]. This lack of knowledge is aggravated when trying to
understand densely connected networks with strong feedback mechanisms. What
is needed is reliable statistical inference of the structure of the molecular regula-
tory networks and signalling pathways by utilization and systematic integration
of transcriptomic, proteomic and metabolic concentration proles.

In fact, statistical inference of molecular regulatory networks from post-
genomic data has been a central topic in computational systems biology for
over a decade. Following up on the seminal paper of [7], a variety of abstract
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models from machine learning and computational multivariate statistics have
been proposed as an alternative to mechanistic models based on differential
equations (see Section 2), and their comparative assessment is an active area of
ongoing research [8]. Our article complements this work in several ways. We have
used a more realistic simulation process that allows for the intrinsic stochasticity
of transcription initiation and translation and is specically targeted at densely
connected feedback systems (Section 3.1). We have quantied the dependence of
the network reconstruction accuracy on the network connectivity and the de-
gree of recurrency. We have compared different alternative ways to approximate
unknown de novo mRNA transcription rates. We have quantied the effect of
missing data related to unknown protein concentrations. And we have carried
out a comparative evaluation of various state-of-the-art methods from machine
learning and computational statistics with a multivariate ANOVA scheme. Fol-
lowing on from this systematic comparative assessment, we have applied the
best method identied to recent gene expression time series for the genes in the
central clock of Arabidopsis thaliana, and have compared the predicted network
with various networks proposed in the molecular systems biology literature.

2 METHOD OVERVIEW

Sparse Regression (Lasso and Elastic Nets): An efficient and widely ap-
plied penalized linear regression method for sparse network reconstruction is the
Least Absolute Shrinkage and Selection Operator (Lasso), introduced in [9, 10]
and first applied to systems biology in [11]. The Lasso optimizes the regression
parameters of a linear model based on the residual sum of squares subject to an
L1-norm regularization term that simultaneously shrinks and selects non-zero
regression parameters. The Elastic Net method, proposed in [12], combines the
L1 penalty with an L2 penalty to address two problems of the Lasso, related to
saturation effects and the selection of correlated variables.
Tesla: A time-varying generalization of sparse regression, called Tesla, was pro-
posed in [13]. The idea is to divide a time series into segments and perform
sparse regression for each time series segment separately. Each segment is asso-
ciated with a different set of regression parameters. To prevent over-complexity
and avoid overfitting, an additional L1-norm penalty is imposed on the pa-
rameter differences for adjacent time series segments. We selected light as the
primary segmentation criterion, and grouped measurements obtained under the
same light condition (light versus darkness) together. The original formulation
of Tesla in [13] is for logistic regression and binary data. The modification to
linear regression is straightforward and more appropriate for our application.
Hierarchical Bayesian regression (’HBR’): The HBR model can be re-
garded as a Bayesian generalization of Tesla, where parameters are sampled
from the posterior distribution with MCMC, and inference borrows strength
from the systematic coupling of related variables. We implemented the method
as described in [14], with the same conjugate priors, and we used a fixed data
segmentation to reflect the light phase (light versus dark).
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Fig. 1. Model network of the circadian clock in Arabidopsis thaliana and

network modifications. Each graph shows interactions among core circadian clock
genes. Solid lines show protein-gene interactions; dashed lines show protein modifica-
tions; and the regulatory influence of light is symbolized by a sun symbol. The top
left panel (“Wildtype”) shows the network structure published in [2]. The remaining
panels show modified network structures, corresponding to constant knockouts of the
proteins shown above the corresponding network structure. Grey boxes group sets of
regulators or regulated components.

Gaussian Processes: Gaussian processes (GPs) are a powerful nonlinear re-
gression method from nonparametric Bayesian statistics. We have applied the
approach described in [15], where the GP framework was specifically adapted
to equation (1) and the problem of learning gene regulatory networks, inferring
parameters by marginal likelihood maximization.

3 DATA

3.1 Realistic data

Various mathematical models have been developed to describe the molecular
interactions and signal transduction processes in the central circadian clock of
Arabidopsis thaliana [1, 3, 5]. They are based on systems of ordinary differential
equations (ODEs) that describe the chemical kinetics of transcription initia-
tion, translation, and post-translational modification, using mass action kinetics
and/or Michaelis-Menten kinetics. A limitation of ODEs is that they typically
converge to limit cycles with regular oscillations and constant amplitude, which
fail to capture the stochastic amplitude variation observed in real qPCR experi-
ments. For a more realistic approach, which captures the intrinsic fluctuations of
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molecular processes in the cell, we modelled the individual molecular processes of
transcription, translation, degradation, dimerization etc. as individual discrete
events. Statistical mechanics arguments then lead to a Markov jump process in
continuous time whose instantaneous reaction rates are directly proportional to
the number of molecules of each reacting component [16, 17]. We followed [4]
and adopted the Bio-PEPA framework [18] to simulate gene expression profiles
for the core circadian clock of Arabidopsis thaliana, using the Bio-PEPA Eclipse
Plug-in4. This framework is built on a stochastic process algebra implementation
of chemical kinetics, and the stochastic simulations are run with the Gillespie
algorithm [19].

We simulated mRNA and protein concentration profiles over time from the
circadian clock regulatory network published in [4] and [2], shown in the top left
panel of Figure 1, named ’Wildtype’. This involves genetic regulatory reactions
for mRNA transcription, protein translation, and mRNA and protein degrada-
tion for 9 genes. A full list of reactions and their corresponding mathematical
descriptions is available from the supplementary material of [4]. In addition, we
simulated mRNA and protein concentration time series from a series of modified
network structures, see Figure 1. For each of these network types we created
11 interventions, in emulation of the biological protocols of [20] and [21]. These
interventions include knock-outs of the proteins GI, LHY, TOC1, and the dou-
ble knock-out PRR7/PRR9. The knock-outs were simulated by setting, in each
step of the Markov jump process, the concentrations of the targeted proteins to
zero. Following these simulations, their values were replaced by random noise,
drawn from a truncated normal distribution (to ensure non-negativity of the
concentrations). Again, in emulation of the biological protocols of [20] and [21],
we simulated varying photo-periods of 4, 6, 8, 12, and 18 hours as well as a full
dark (DD) and a full light (LL) cycle, each following a 12h-12h light-dark cycle
entrainment phase over 5 days. For each type of intervention, concentration time
series were generated to encompass a simulated epoch of 6 days, of which the
first 5 days were used for entrainment. After entrainment, molecule counts of
mRNA and proteins were recorded in 2 hour intervals of simulated time, for 24
hours, giving a total of 13 ’observations’. Combining these 13 observations for
each intervention type yields 143 observations in total for each of the regulatory
network structures shown in Figure 1. For each intervention type and sampling
interval length, five independent data sets were generated. To standardize the
data, we followed the widely established procedure to rescale all molecule con-
centrations to zero mean and unit standard deviation. Two different data types
were used in our evaluation procedures: complete data, which include both the
mRNA and the protein concentrations, and incomplete data, in which the pro-
tein concentrations are missing and regulatory network structures have to be
inferred on the basis of mRNA concentrations alone. In summary, we generated
data for six different network structures, shown in Figure 1, repeating each data
generation 5 times independently (i.e. starting from different random number

4 http://www.biopepa.org
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generator seeds), and using complete observations (mRNAs and proteins) ver-
sus mRNA concentrations only.

3.2 Real application

We also used real transcription profiles for the key circadian regulatory genes
in the model plant A. thaliana. The data used in our study come from the EU
project TiMet [22], whose objective is the elucidation of the interaction between
circadian regulation and metabolism in plants. The data consist of transcription
profiles for the core clock genes from the leaves of various genetic variants of
A. thaliana, measured with qPCR. The study encompasses two wildtypes of the
strains Columbia (Col-0) and Wasilewski (WS) and 4 clock mutants, namely a
double knock-out ’LHY/CCA1’ in the WS strain, a single knock-out of ’GI’ and
’TOC1’ in the strain Col-0, and a double-knockout ’PRR7/PRR9’ in strain Col-0.
The plants were grown in the following 3 light conditions: a diurnal cycle with 12
hours light and 12 hour darkness (12L/12D), an extended night with full darkness
for 24 hours (DD), and an extended light with constant light (LL) for 24 hours.
Samples were taken every 2 hours to measure mRNA concentrations; see [20].
We focus on the genes that are included in the models from the literature: LHY,
CCA1, PRR5, PRR7, PRR9, TOC1, ELF3, ELF4 with a total of 288 samples
per gene. We used the log mean copy number of mRNA per cell and applied a
gene wise Z-score transformation for data standardization. An additional binary
light indicator variable was included to indicate the status of the light condition.

4 METHODOLOGICAL DETAILS

4.1 Rate estimation

Based on the fundamental equation of transcriptional regulation

dyi

dt
= ci + fi(xi(t),θ)− λiyi(t) (1)

introduced in [23], where i refers to a gene in the biopathway, yi(t) denotes its
mRNA concentration at time t, ci is a baseline production rate, λi is a decay
rate, xi(t) is a vector of concentrations of potential regulators that control the
concentration of mRNA i, and θ is a vector of regulation parameters, all methods
described in Section 2 aim to predict the time derivatives of the target mRNA
concentrations from the (mRNA or protein) concentrations of the putative regu-
lators. In the absence of de novo mRNA data, we approximated these derivatives

with finite difference quotients, dy

dt
≈ y(t+δt)−y(t−δt)

2δt
, trying two different time

intervals: δt = 2 hours (coarse gradient), and δt = 24 minutes (fine gradient).
Alternatively, we used an approach based on smooth interpolation with Gaussian
processes, exploiting the fact that the derivative of a Gaussian process is also
a Gaussian process; hence analytic expressions for the mean and the standard
deviation of the derivative are available [24].
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4.2 Implementation details

For the sparse regression models a 10-fold cross-validation scheme was applied
to optimize the regularization parameters. For Lasso and the Elastic Net we
optimized the regression parameters with cyclical coordinate descent, using the
R-package GLMNET from CRAN. Tesla was run with a linear regression im-
plementation, and the regression parameters were optimized with convex pro-
gramming, using the software from [13]. Absolute values of non-zero regression
coefficients were used for ranking molecular interactions. For Tesla we have two
segments (light versus darkness) with potentially different regression parameters,
and we used the average absolute values of the non-zero regression coefficients
for ranking the molecular interactions. The MCMC simulations for hierarchical
Bayesian regression (HBR) were run for 20,000 iterations each, with a burn-in
period of 10,000 iterations discarded. This choice gave satisfactory convergence
diagnostics, based on correlation scatter plots and Gelman-Rubin potential scale
reduction factors [25]. Marginal posterior probabilities of molecular interactions
were obtained from the MCMC trajectories, estimated from the relative fre-
quency of inclusion of the corresponding edges in the sampled models. For the
Gaussian process we used the implementation in the GP4GRN software package,
developed in [15].

4.3 Network Inference Scoring Scheme

The methods under comparison provide means by which interactions between
genes and proteins can be ranked in terms of their significance or influence. If
the true network is known, this ranking defines the Receiver Operating Charac-
teristic (ROC) curve, where for all possible threshold values, the sensitivity or
recall is plotted against the complementary specificity. By numerical integration
we then obtain the area under the curve (AUROC) as a global measure of net-
work reconstruction accuracy, where larger values indicate a better performance,
starting from AUROC=0.5 to indicate random expectation, to AUROC=1 for
perfect network reconstruction. We note that for networks of the size considered
here a performance evaluation based on AUROC and AUPRC (area under the
precision-recall curve) gives very similar results [26], and AUROC scores have
the advantage of a clearer statistical interpretation [27].

4.4 ANOVA

For our evaluation, we were running hundreds of simulations for a variety of
different settings, related to the observation status of the molecular components
(mRNA only versus mRNAs and proteins), the method for derivative (rate) es-
timation, the regulatory network structure (shown in Figure 1), and the method
applied for learning this structure from data (see Section 2). The AUROC re-
sults are complex and elude clearly discernible patterns and trends. In order to
disentangle the different factors, and in particular distinguish the effect of the
model from the other confounding factors, we adopted the DELVE evaluation
procedure for comparative assessment of classification and regression methods
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Fig. 2. Diagnostics for the ANOVA model, see equation (2). (a) In the QQ
plot the quantiles of the residuals (vertical axis) are plotted against the quantiles of the
Gaussian distribution (horizontal axis). The linear relation indicates a good agreement
with the Gaussian distribution; the deviations for very low and high values point to
slightly longer tails. (b) Scatter plot of the residuals (vertical axis) against the AUROC
values fitted with the ANOVA model (horizontal axis): For high values, the spread of
the residuals seems to become slightly tighter, but this effect is weak, and overall there
is no clearly discernible pattern of any dependence between the residuals and the fitted
values.

[28] and set up a multi-way analysis of variance (ANOVA) scheme (see, e.g.,[29]).
Let Yognmk denote the AUROC score obtained for observability status o, gra-
dient computation g, network topology n, network reconstruction method m,
and data instantiation k. The range of these index parameters is as follows:
o ∈ {0, 1}, where o = 0 indicates partial (mRNAs only) and o = 1 complete
(mRNAs and proteins) observation; g ∈ {0, 1, 2}, where g = 0 denotes coarse
gradient, g = 1 fine gradient, and g = 2 gradient from a smooth GP inter-
polant; m ∈ {0, 1, 2, 3, 4, 5}, where m = 0 represents “wildtype” (the published
network topology), and m 6= 0 the five network modifications shown in Fig-
ure 1; n ∈ {0, 1, 2, 3, 4}, for Lasso (0), Elastic Net (1), Tesla (2), GP (3), and
hierarchical Bayesian regression (4); and k ∈ {0, 1, 2, 3, 4} for five different data
instantiations. We model the AUROC scores with the following ANOVA ap-
proach:

yognmk = Oo +Gg +Nn +Mm + εognmk (2)

where εognmk ∼ N(0, σ2) is zero-mean white additive Gaussian noise, and Oo,
Gg, Nn, and Mm are main effects associated with observation status, gradi-
ent computation, network topology, and network reconstruction method, respec-
tively. Figures 2 and 3 show the results of a standard residual analysis. Since
the results do not indicate any violation of the model assumptions, the ANOVA
analysis provides an adequate mechanism for extracting trends and patterns
from our simulations studies.
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Fig. 3. Diagnostics for the ANOVA model, see equation (2), continued Box-
plot representations of the distribution of the residuals for all possible values of the
four main effects. There are no obvious deviations from a uniform pattern, and the
results are consistent with the assumption that the distributions of the residuals are
identical and independent of the main effects.

5 RESULTS

5.1 Comparative evaluation study

Comparison between the methods: A main objective of our study is a sys-
tematic comparative performance evaluation of the models reviewed in Section 2.
These models were applied to the different data described in Section 3.1, differ-
ent observabilities (proteins and mRNAs versus mRNAs only), different gradient
computations (Section 4.1), and different network topologies (as shown in Fig-
ure 1). The AUROC scores vary considerably, depending on the different factors.
To enable a clearer interpretation we adopted the ANOVA method described in
Section 4.4. The quantity of interest is Mm - the main effect of the network
reconstruction method, which is plotted in Figure 4(a). Our study suggests that
the hierarchical Bayesian regression model performs significantly better than the
Gaussian Process method of [15] and sparse regression methods (Lasso, Elastic
Net, and Tesla), justifying the higher computational costs required for the infer-
ence scheme (MCMC).5 Influence of rate estimation: In the present study
we estimated the time derivatives of mRNA concentrations directly from the
mRNA concentration time courses. We approximated the time derivatives by fi-
nite difference quotients from the low frequency time series, where observations
were taken every δt = 2h hours (’coarse gradient’). Alternatively, we tried a finer
resolution of δt = 24 minutes around the main time points (’fine gradient’). As a

5 The approximate average run times per data set on an Intel(R) Xeon(R) CPU X5570
with 2.93GHz were < 1min for Lasso and Elastic, 2.5min (50min) for Tesla without
(with) 10-fold cross validation, 8.5min for GP, and 21 min for HBR.
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further alternative, we applied a Gaussian process smoothing approach. The re-
sults are shown in Figure 4(b). The fine gradient achieves an improvement on the
coarse gradient, which is consistent with expectation. However, our study also
allows a quantification of the improvement, which is in the order of ∆ AUROC
= 0.035 on average. Interestingly, our study suggests that gradient computation
in combination with smooth interpolation using Gaussian processes achieves an
even more substantial improvement of about ∆ AUROC = 0.041. This indicates
that intelligent data preprocessing leads to a better boost in predictive perfor-
mance than blindly carrying out additional experiments.
Influence of missing protein concentrations: We have carried out the sim-
ulations for two types of data: complete observation, where both protein and
mRNA concentrations are available, and partial observation, where protein con-
centrations are missing. The results are shown in Figure 4(c) and confirm the
expected trend that the network reconstruction accuracy becomes worse with
missing data. The important new contribution of our study is to objectively
assess the difference in performance, profiled over different network topologies,
different ways of preprocessing the data, and different statistics and machine
learning methods. This has been effected with the ANOVA approach described
in Section 4.4, which quantifies the effect of missing protein concentrations as
leading to a deterioration of ∆AUROC = 0.05± 0.01.
Influence of network topology and feedback loops: An important aspect
of our study is the investigation of how the network reconstruction accuracy de-
pends on the connectivity of the network topology and the proportion of recur-
rent connections. To this end we have successively pruned feedback interactions,
as shown in Figure 1. Figure 4(d) suggests that there is a noticeable pattern,
with less recurrent network structures appearing to be easier to learn and leading
to higher AUROC scores. While this confirms a known and intuitively plausible
trend, our study allows an objective quantification of the difference in perfor-
mance, which has been found to amount to ∆AUROC = 0.14 between the most
and least recurrent structures.

5.2 Circadian regulation network in Arabidopsis thaliana

Figure 5 shows the network learned from the TiMet data, and four hypothetical
networks published in [1] and [2, 3, 5]. Solid lines show transcriptional regulation,
dashed lines represent protein complex formation. The latter cannot be learned
from transcriptional data and are thus systematically missing. This explains,
for instance, why ZTL and TOC1 are detached from the remaining network.
The same applies to the modified proteins TOC1-mod and LHY-mod. Vari-
ous features of the published networks are reproduced, though, like the acute
light response in the transcription of LHY and CCA1, the activation of PRR7
by PRR9, the inhibition of GI by LHY/CCA1, and the inhibition of ELF4 by
TOC1, which can be found in the network P2013. Various features are similar to
the published networks. In the reconstructed network, PRR5 is directly activated
by PRR9, while in the published networks, the activation is indirect, via PRR7.
The positive feedback loop from the so-called evening genes to the morning genes
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Fig. 4. Confidence intervals for the group means associated with the four

main effects from the ANOVA analysis. (a) Effect of the inference method:
Lasso, Elastic Net, Tesla, Gaussian Processes (GP), and hierarchical Bayesian regres-
sion (HBR). (b) Effect of the three rate estimation method: coarse gradient (top), fine
gradient (middle), and gradient from a smooth GP interpolant (bottom). (c) Effect of
the observation status: complete observations of both protein and mRNA concentra-
tions (’proteins’) versus the observation of mRNA concentrations only (’genes’). (d)
Effect of the network structure: the wildtype network and the five modified structures
shown in Figure 1. As one descends from the top to the bottom, the network structures
become sparser, with feedback loops increasingly being pruned.

consists of an activation of LHY/CCA1 by GI. The nature of this feedback loop
(activation) is consistent with [2]. In these publications, the regulatory influence
is caused by TOC1 rather than GI, but these two genes are “neighbours” in
the published networks (meaning: regulating each other, and exhibiting similar
expression profiles). One of the PRR-genes (PRR5) is predicted to be inhibited
by ELF3. This is consistent with [3, 5], although in these publications, the in-
teraction is indirect (via EC) and affects a neighbouring target gene (PRR9).
As mentioned above, it is intrinsically unfeasible to learn post-transcriptional
processes, like protein complex formation, from transcriptional data alone; so
it is no surprise to see that the protein complex EC is detached from the re-
maining network. It is particularly interesting to note that a key network motif
repeatedly found in the reconstructed network concurs with the published net-
works. This is the two-node feedback motif in which a gene is the activator of
its own inhibitor. This structure is particularly clearly seen in Locke2006 [1],
where it occurs three times: within the group of morning genes (LHY/CCA1 ac-
tivating PRR7/PRR9, PRR7/PRR9 inhibiting LHY/CCA1), within the group
of evening genes (GI activating TOC1, TOC1 inhibiting GI), and between the
morning and evening genes (LHY/CCA1 inhibiting TOC1, TOC1 activating
LHY/CCA1). These three feedback mechanisms exist in the reconstructed net-
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Fig. 5. Hypothetical circadian clock networks from the literature, and in-

ferred from the TiMet gene expression data. All panels except for the bottom
show hypothetical networks from the literature: Locke2006 [1], P2010 [2], P2011 [3],
and P2013 [5]. The bottom panel (TiMet) displays the reconstructed network from the
TiMet data, described in Section 3.2, using the hierarchical Bayesian regression model.
Gene interactions are shown by solid lines, protein interactions are shown by dashed
lines, and regulation by light is represented by a sun symbol. Arrow head: activation;
vertical bar: inhibition. The interactions in the reconstructed network were obtained
from their estimated posterior probabilities. Those above the selected threshold of 0.95
were included in the interaction network; those below were discarded.

work also, involving neighbouring nodes in the same three gene groups: morning
genes (PRR9 activating PRR5, PRR5 inhibiting PRR9), evening genes (GI ac-
tivating ELF4, ELF4 inhibiting GI), and between morning and evening genes
(GI activating LHY/CCA1, LHY/CCA1 inhibiting GI). This suggests that, de-
spite deviations in the detailed mechanisms, the key topological features of the
published networks have been successfully reconstructed.

6 DISCUSSION

We have carried out a comparative evaluation of five state-of-the-art methods for
regulatory network reconstruction, using the central gene regulatory network of
the circadian clock in A. thaliana. Our results confirm various intuitively plausi-
ble trends: that the difficulty of network reconstruction increases with increasing
network connectivity, that network reconstruction deteriorates with incomplete
observation (missing protein concentrations), and that for estimating de novo
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mRNA transcription rates, data smoothing has a beneficial effect. The novel con-
tribution of our study consists in objectively quantifying these effects, in terms
of average AUROC score differences associated with the respective main effects
in the ANOVA scheme. For the model comparison, we have shown that hierar-
chical Bayesian regression outperforms penalized linear regression and Gaussian
processes, again objectively quantifying the performance gain. We have applied
the best network reconstruction method from the comparative assessment to
the mRNA concentration profiles from the TiMet project. The reconstructed
network contains several topological features that are consistent with recently
published regulatory networks of the circadian clock in A. thaliana. However, the
detailed structure differs in various aspects. This difference is a consequence of
the different nature of the methods. For the networks published in the literature,
the processes of transcriptional regulation were modelled with ordinary differen-
tial equations. The network structures were not selected with rigorous statistical
inference; doing that e.g. with the procedure proposed in [30] is computationally
prohibitive. The consequence is an intrinsic uncertainty about the true network
structure, as discussed in [6] and evidenced by repeated recent network mod-
ifications in the literature (see Figure 5). The methods applied in the present
article are based on more abstract models of molecular regulatory interactions,
which render objective statistical inference viable. Hence, our understanding of
circadian regulation at the molecular level will potentially improve as a conse-
quence of a synthesis of both approaches, which will suggest novel avenues for
model adjustment. The evaluated network reconstruction methods are particu-
larly useful for linking circadian regulation in plants to metabolism, due to the
current absence of detailed hypotheses and reliable mechanistic models.
The aim of our future work is to treat the interventional data more realistically.
When a gene is knocked out, we currently set the concentration of the corre-
sponding protein to zero. This corresponds to post-transcriptional gene silenc-
ing, in which the translation of mRNA into functional protein is inhibited. What
is actually happening in the experiments that motivated our study (reported in
Section 5.1) is that certain plant genes are knocked out by mutagenesis. This
can be simulated more realistically by setting the corresponding mRNA rather
than protein concentrations to zero, which requires a modification of our current
simulation set-up. Due to space and time constraints, our present study has fo-
cused on regression-type models. Various other methods have been proposed in
the literature, including state-space models, Bayesian networks and approaches
based on mutual information. We aim to expand our current work to include
them in our comparative evaluation.
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