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Abstract. While significant progress had been made in synthetic biol-
ogy over the last decade, researchers still lack a reliable tool for computer-
aided design of gene regulatory networks (GRN), one that can reveal the
full range of nonlinear dynamic behaviors in a single run. Here, we pro-
pose a network design cycle that utilizes both the qualitative simulation
of GRNs modeled by a class of ODE equations and the intrinsic stochas-
ticity of regulation to ultimately design a network that exhibits a spec-
ified desired behavior with the highest probability. Finally, to show the
power and ease of our method, we perform a case study with a real-life
benchmark gene network to get a synthetic oscillator.
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1 Introduction

In synthetic biology, in silico approaches are a must in the design of a gene regu-
latory network (GRN) before costly in vitro experiments. Thus, synthetic biology
needs a reliable tool that is able to reveal the full range of network dynamics.
But, the traditional mathematical modeling cycle still heavily depends on trial-
and-error via numerical investigations that, in most cases, are both nontrivial
and time-consuming.

To address this problem, we implemented a tool for automated qualitative
analysis and simulation of GRNs modeled by a class of ODE equations that
adopts steep sigmoidal response functions to capture the intrinsic nonlinearity
and temporal multi-scale of GRN dynamics. The resulting tool calculates the
dynamics of these models on the basis of sound rules established by [2]. Under
specific biologically reasonable assumptions and sufficient conditions, our tool
provides sound and complete predictions [3], i.e. in a single run, it provides all
and only possible dynamics of the GRN network at study, where each predicted
trajectory is characterized by ranges of parameter values as well as by its qual-
itative dynamical property, namely stable, cyclic, or spiraling dynamics. The
proposed simulator also takes into account the inherent stochasticity of regula-
tion, and calculates the probability of occurrence of each trajectory derived from
the deterministic model by assigning a measure of uncertainty to the parameter
values [1] and by propagating such uncertain information along the transitions of
each trajectory. Then, we can develop robust control strategies aimed at leading
a cell system towards or away from a desired or undesired state with the highest
probability of success.
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Fig. 1. Design cycle of a synthetic network to display a desired dynamic
behavior. Qualitative simulations allow the prediction of all qualitatively distinct
network behaviors, which can be used to verify if the design goals are satisfied by
the hypothesized network. Then, the introduction of stochasticity on parameter values
allows the network to achieve the desired behavior with the highest probability. The
top ranking design can be passed onto in vitro experimentation for the next stages of
implementation.

Network design is made easier by our simulator as the responses to perturba-
tions (e.g. addition/deletion of genes, changes in connectivity, external stimula-
tion, ete.) will become apparent as they can be quickly and rigorously calculated.
Likewise, changes in the initial conditions are conveniently explored and their
consequences on system dynamics will be more obvious. Thus, model-based net-
work design becomes a development cycle that consists of the following phases:

1. Hypothesized networks. Plausible GRN network structures are conceptu-
alized from preexisting functional modules/smaller circuits of larger networks
or created ex movo with the goal of exhibiting a desired dynamic behavior.

2. Model construction. Formalization of a symbolic ODE model based on
the regulatory interactions of one selected gene network.

3. Qualitative simulation. Prediction of all the potential qualitative behav-
iors from specific set of initial conditions and parameter constraints.

4. Hypothesis testing. Comparison of simulated results to the desired behav-
ior. A model that is unable to reproduce the desired behavior is eliminated
and the design cycle restarts anew. Otherwise, the simulated results contain
rich information, such as all transient states before the final behavior and the
parameter conditions to reach any state, that can be used to revise the origi-
nal design goal. For example, a designer may specify requirements about the

transient states before arriving at the desired behavior; and consequently,
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the designer is able to define an idealized temporal profile of gene network
activity.

5. Stochastic parameters. Distribution functions representing the stochas-
tic values of model parameters are refined to calculate and maximize the
probability of the desired behaviors and minimize undesired ones.

6. Network selection. The proposed networks can be ranked by scoring the
probability of success alongside the designer’s preference. The most plausi-
ble model can then be selected for interpretation by synthetic biology and
adapted for in vitro experimentation.

Figure 1 shows the phases of the model-based design cycle. To demonstrate
the power and ease of our method in the design of a synthetic network, as
a benchmark we take a real-life example from synthetic biology, the so-called
IRMA network that has been extensively studied in both computer modeling
and experiments [4, 5]. Its dynamical properties and parameter specifications are
well-known, giving us the flexibility to operate in various knowledge scenarios:
unknown, well-defined, or a mixture. Thus, using the five-gene synthetic network
constructed in yeast Saccharomyces cerevisiae, we are able to accurately predict
the dynamics of the IRMA network in various modification scenarios, which con-
cur with the findings of [5], and detect, within a set of candidate network models,
the one that reproduces the desired behavior with the highest probability.

2 IRMA: a Synthetic Network Case-Study

The main aim of this section is to demonstrate how to use the model-based de-
sign cycle to obtain a specific desired behavior in a well-known, reasonably-sized
gene regulatory network. Let our design goal be the introduction of oscillatory
dynamics into the IRMA network. Similarly to [5], we start from a network struc-
ture that under certain conditions has stable steady-state dynamics. Let us refer
to this network as the original structure. By following the carefully-designed
phases of the design cycle, we construct, simulate, and modify the five-gene
network until oscillations are found. In addition to the original structure, we
specifically explore two hypothesized networks: the first has the same structure
with a different parameter space, while the second has a re-engineered network
connection. Though the re-engineered networks are adapted from [5], our re-
sults are much improved compared to the various numerical studies previously
employed by the authors, which were not only computationally taxing but also
limited, as each run only provides a snapshot of the dynamics in a single in-
stance of parameter values. Then, these numerical methods are time-consuming
and exhaust valuable resources. Whereas, in this preliminary study, we show
the ease of predicting the complete picture of network behaviors over a specified
range of parameters in a single simulation. This implies a dramatic reduction in
the computational times.
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Fig. 2. Original Structure. The IRMA network structure in galactose growing con-
ditions. As in (1), 1=[Cbfl], x2=[Gal4], zs=[Swi5], £4=[Gal80], and z5=[Ashl]. Gene
activation and inhibition are marked by arrow and bar, respectively. The response
functions (red) that affect the change in the z; variable (green) were labeled for con-
venience.

2.1 Selection of Plausible Network Structures

Let us consider the first four phases in the model-based design cycle (i.e. network
hypothesis, model construction, qualitative simulation, and hypothesis testing)
that are necessary to design a GRN that reproduces the desired behavior. To
start, we consider the original IRMA network.

1. Hypothesized network. Since its realization, the IRMA model has often
been used as a benchmark in synthetic biology [4]. For our case study, we start
with the IRMA network structure under galactose growing conditions, diagramed
in Fig. 2. The network topology consists of two transcriptional feedback loops:
one positive and one negative. This network structure is known to have stable
steady-state dynamics; however, we take it as a basis for successive modifications
on this model structure to obtain oscillatory dynamics.

2. Model construction. To formulate the IRMA model into the mathematical
framework given in [2] that considers a class of ODE models where regulation
is threshold-dependent, let x; represent the concentrations of protein for the
following genes: cbf1, galj, swib, gal80, and ashl respectively for i = 1,2, 3,4, 5.
In literature and in the framework, gene activation is best approximated by a
continuous yet very steep sigmoid function that switches from 0 to 1 when the
gene product reaches a critical threshold concentration at x; = 6;;. Usually, it is
mathematically expressed by the Hill function:

1
L

Zii(xi,q,0;) = ————+
1,]( ir 4, z]) le/q N 92,1j/q’
where 0 < ¢ < 1 is the measure of steepness and non-negative j = 0,1,...,m;
represents the threshold index for each gene action. Instead, gene inhibition is
modeled by (1 — Z; ;). So, by taking into account all the network connections
for each gene in the original IRMA (Fig. 2), we can write the model with the
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following system of ODE equations:
¥ =knZsg +kioZ31(1 —Zs1) — iz,
Zo = ko1 + kooZ1 1 — o2,
23 = k31 + k32221 — 373, (1)
T4 = ka1 + ka2 Z33 — yaa ,
5 = ks1 + ksaZ3 2 — 525,

where k;; is the transcription rate for the [*” synthesis term and +; is the degra-

dation rate. By our assumptions, 6,0 = 0 for any ¢ and the thresholds must be
ordered, i.e. 0;; < 0y for j < k. Here, we have ordered the three threshold
concentrations of z3 in accordance with [6], and all other x; variables only have
one threshold. For the symbolic parameter relationships between k;;,;, and 0,;,
we have constructed the initial parameter inequalities according to the nominal
values given in [5]. Inherently, we assume positive biological rates k;; > 0, ; > 0
and threshold values 6;; > 0. We define the set of inequalities as Iy = {k; > 0;
i > 0; 055 > 05 kyp > 710115 k12 > 710115 ka1 < yela1; kaz > vablar; kst < v50s1;
ksa > v5051}.

3. Qualitative simulation. The automated simulator [3], based on the math-
ematical results given in [2], soundly predicts the set of all possible system be-
haviors exhibited by a GRN model for the given set of initial parameters and
starting domain, which are symbolically expressed by ranges of parameter in-
equalities and x; ranges with respect to their thresholds. The system phase space
is partitioned by the threshold hyperplanes into domains characterized by the
gene regulatory dynamics that are either linear or nonlinear. In a regular domain,
all genes are far from threshold values, making the Hill function take value of
either 0 or 1, and then the system dynamics are linear. Otherwise, one or more
genes has a nonlinear response and the domain is switching. For algorithmic
purposes, each qualitatively distinct domain is unequivocally labeled D;. By
using the sound rules established in [2] to qualitatively analyze the regulatory
dynamics locally in each domain, we can compose a solution trajectory that
traverses the system phase space through a sequence of local transitions from
one domain to another [3]. Then, each solution trajectory is characterized by a
unique sequence of traversed domains. Since each local transition from a domain
D; to the successive D; is associated with a set of parameter inequalities I; ;,
which must be satisfied for the transition to occur, the solution trajectory is also
characterized by the joint set of inequalities constructed from all the parame-
ter constraints in the initial set and all local transitions that occurred in the
trajectory. Let the output from a single simulation be a behavior tree such that
all possible solution trajectories starting from same initial domain are organized
into a tree data rooted in the initial domain.

Starting in a regular domain where x; and x5 are above threshold (Dy), we
simulate the model given by (1) with the initial inequalities: Ip U {k31 + k32 <
v3631} to obtain Fig. 3. Let us refer to this model as My to distinguish from
subsequent modifications. As expected, the behavior tree shows that all solution
trajectories end in stable points as indicated by the double hexagon.
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Fig. 3. Solution tree of the qualitative simulation of the original IRMA network (M)
described in (1) starting at Dy with the given initial parameters. Yellow and blue color
represents regular and switching domains, respectively. Hexagon indicates that solution
trajectory has stopped at a stable point inside the numbered domain.

4. Hypothesis testing. The simulation results confirm the stable steady-state
dynamics in the original IRMA model as all solution trajectories end in a stable
point in the regular domain where all genes are below threshold (D;) or where
only one x4 is above threshold (Dj27). We remark, in general, that the different
sequences of transition states before the final behavior may provide useful insight
to the synthetic biologist later in the design process, but as our design goal only
focuses on obtaining oscillatory dynamics in the final behavior, we do not make
use of this information in this case study. As the original model does not display
our desired oscillatory behavior, in our model-based design cycle, this network
must be eliminated or modified. Now, we will return to Phase 1 for evaluation
and re-engineering.

2.2 Changing the Parameter Space: from M, to M,

1. Hypothesized networks. To keep the original network structure and obtain
oscillatory behavior, we observe that it is necessary to find a balance between
the two feedback loops in the original model to obtain oscillatory dynamics.
The swi5 gene product (z3) seems to be the key player as the first and second
thresholds participate in the positive and negative feedback of cbf1 expression
(z1), respectively. However, the original model is imbalanced and has a weak
positive feedback loop because of the initial constraint on x3, i.e. k31 + k3o <
73631, which restricts the ability of x3 to become active in the GNR dynamics.
Then, we should modify My by using a different set of the initial inequalities,
which in effect, puts the network into a different the parameter space.
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2. Model construction. In the re-engineered model M7, we change the initial
inequalities to let the synthesis rates of x3 be between the first and second
thresholds, i.e. 3031 < k31 + k32 < 73032, such that each kg; still remains
relatively small, i.e. k3; < 3631 for [ = 1,2. Then, the initial inequalities for the
M network is: Io U I]le where []\/[1 = {’73931 < k31 + k3o < 7y3032; k31 < 7y3031;
k32 < y3031}.

3. Qualitative simulation. The simulation of M, starting from the same
initial domain Dyg, results in a larger behavior tree with 49 trajectories, seven of
which are cycles. This tree is too large to be displayed here, but we noticed that
the behavior tree is actually made of 7 sub-trees that have similar dynamics as
each sub-tree has 7 trajectories: one of them is cycling and the rest are stable.
We have displayed one of the subtrees in Fig. 4 by simulating the model in
an initial domain where only x3 is above threshold (Ds). The cyclic trajectory
starts from Ds, traverses a series of domains, and then returns to Ds. Since the
trajectory returns to a regular domain, it will encounter the same set of linear
ODE equations that will direct the motion to the same subsequence sequence
of domains. All of the inequality constraints that allow the motion of the cyclic
trajectory will have been satisfied the first time the trajectory passes through
that sequence of domains; therefore, this trajectory is able to repeatedly travel
this sequence of domains in a cycle. In the cycle’s path, there are six different
places in the behavior tree where the trajectory could have branched to become
a stable trajectory. Then, the inequalities at the branching points are critical
to the final behavior. These inequalities are displayed in Table 1. The left and
right column lists of all the inequalities required to branch off into either a stable
or cyclic trajectory, respectively. We remark that these results provide valuable
information on how and when to restrict the parameters to obtain the desired
behavior.

4. Hypothesis testing. Here, the results are more promising as the re-engineered
network actually displays our desired behavior where the original model did not.
We proceed by saving this network for Phase 5 where we will use stochastic pa-
rameters to rank each candidate model by the probability to obtain the desired
behavior. For the meantime, we return back to Phase 1 to see if we can im-
prove the behavior tree; more specifically, we have the goal of getting a smaller
behavior tree with more instances of cycles.

2.3 Re-engineering the Network Structure: from M; to M,

1: Hypothesized networks. We hypothesize that the strength and timing of
the positive feedback loop on swi5 (x3) can be increased by removing the connec-
tion from swi5 (x3) to ¢bf! (x1) and by directly amplifying swi5 (x3) expression
with a positive auto-regulatory loop. Let us construct this auto-regulation as
drawn in Fig. 5 and refer to the network as My.
2. Model construction. For M,, the modifications are only related to the
change equations for x; and z3. The variable x; is no longer activated by x3; it
has a small basal expression rate kq; and is still inhibited by x5. Then, let Zs5 4
be the auto-regulation that activates itself (x3) with a maximal transcription
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Fig. 4. Simulated sub-tree of modified network (M;) with given initial conditions.
Colors and shapes are as in Fig. 3. Double circle marks cyclic trajectory that returns
to the starting domain in Ds.

Table 1. Branch point inequalities I; ; listed by individual local transitions D; — D;.

stable cycle
Is2 |0 <1611 I36 |k21 + ka2 > v2021
Io18 |k31 + ka2 > v30s1|los |0 < v1611
I7,4 |ko1 < y2021 I716 |k31 + k32 > v30s1
Ios,96 k11 + k12 > Y1011 |125,22| k21 < Y2021
Tig,10]k31 < 73031 T19,20 k11 + k12 > 116011
121,24 k21 + koo > v2021|121,12|k31 < 3031
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Fig. 5. Modified structure. Comparison of the original IRMA network structure
(Mo) compared to the modified network (M) that includes a positive auto-regulatory
feedback loop on 3. The changes made to the original network are highlighted.

rate of k33. So, the ODE equations are the same as (1) with the exception to
and x3, which shall be written as below:

1=k +ki2(1 —Zs1) — iz, @)

23 = k31 + k3aZo1 + k3zZ3 1 — y373.
Parameter inequalities must be added to state the relationship in the modified
parameters of x; and x3. The initial inequalities to be appended are I, =
{k11 < m1011; kss < 73031; ka1 + kso < 73033; 3031 < k31 + k33 < 3bss;
3031 < ksa+kss < v3033}. Thus, the entire set of initial inequalities is: In\{k11 >
Y1011 YUIng, \{k31+ksa < 3032 }UIny,. For easy comparison, we have summarized
the initial inequalities for the original model M, the previously reengineered
network M; and the current network Ms in the table below.

Model M, Model M, Model M,
Iy Iy Io\{k11 > 711011}
k31 + k32 < y3031|k31 < 3031 k31 < v3631
k3a < 3031 k3o < v3631

k31 + k3a > v3031 |k31 + K3z > 73031
k31 + k32 < v3032 k31 + k3a < 73033
k11 <yibn

k33 < 3031

k31 + k33 > 3031
k31 + k33 < v3033
k3o + k33 > 3031
k32 + k33 < 73033

3. Qualitative simulation. Starting in the same initial domain (Dy), the be-
havior tree shows nine possible behaviors with four cyclic trajectories, shown in
Fig. 6. All stable trajectories either end in Dy7 (described above) or where only
x4 and x3 are above threshold, i.e. 037 < x3 < 039, in Dig3. All cycles start
and end in in the same domain Dy7. As before, the inequalities at the branching

points into stable or cyclic trajectory are displayed in Table 2.
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Fig. 6. Solution tree of network M, with initial conditions in Dg. All notation is the
same as Fig. 4.

Table 2. Inequalities I;,; for local transition D; — D; at each branching point.

stable cycle
Y1011 < k11 + k12 < 71612 Io7.36 |k31 + kaz + ksz > 3032
Inr o Y2021 < ka1 + koo < 72022 Ius,54 k31 + ka2 + ks > 3033
’ Y3031 < ka1 + ks2 + ksz < 3032 145,108 |ks1 + ks2 > Y5051
0 < ka1 < 7a041,0 < ks1 < v5051|1171,170 | k11 < 71011
0 < k11 <71611,0 < k21 < y2021|1171,180 |k31 + k32 + k33 > 73033
63165 Y3032 < k31 + ka3 < 7y3b33 I169,166 |k22 < Y2021
N0 < ka1 < ya0an Lie9,178 k31 + k32 + k33 > 73033
Y5051 < ks1 + ks2 < y5052 Li63,154 | k31 + kaz < 73032
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4. Hypothesis testing. By comparing the results of the two re-engineered
models, we argue that the behavior tree of Ms is intuitively more favorable to
produce cycles than M; as there are 4 cycles over 9 trajectories compared to
the 7 cycles over 49 trajectories. In Ms, the inequality requirements for a stable
point are quite strict as there are restrictions on parameters that appear in all
five state equations, as seen in Table 2. Then, the parameter space to get a stable
trajectory is better defined, and then it will be more feasible to find parameter
values that lead to oscillatory dynamics. We keep both models M; and M> for
the next phase of development in the model-based design cycle. The current
model M, seems more favorable to produce oscillatory behaviors with a higher
probability, but for confirmation, stochastic methods should be applied to both
trees.

2.4 Refinement of Plausible Network Parameters

5. Stochastic parameters. At this stage in the design cycle, we have looked
at three GRN networks and models. The original IRMA network M, did not
produce oscillations, so we discard it. Over the first four phases of the model-
based design cycle, we have developed two hypothesized networks M; and Ms
that were both able to exhibit oscillatory dynamics. In this phase, we assign
distribution functions to each parameter and, by using the method given in [1],
we calculate the probability of each solution trajectory. The simulated behav-
ior trees and the inequalities for each local transition are useful information to
propagate the uncertainty down the behavior tree to obtain the probability of
the stable trajectories versus cycles. Knowledge of parameter values is good as
the IRMA model has been well-studied. Then by using well-defined distribution
functions, the probability of occurrence is more accurate. However, in the case of
a wide range of parameter values, we are still able to maximize the probability
of the oscillatory behavior and minimize the occurrence of stable trajectories.
6. Network selection. The combination of the qualitative and stochastic as-
pects of the computational tool provide powerful insights to the study of GRNs
because: (i) the qualitative simulation allows the ability to predict all possible
system behaviors, and (ii) the stochastic parameters aids in the prediction of
likeness of occurrence of a specific system behavior and incorporates the in-
herent stochasticity of regulation. Taken all-together, this becomes a process of
development, ranking, and eventually selection of a network for implementation
by the synthetic biologists. The top-ranking model, with the highest probability
of getting the desired dynamics, might be difficult to implement in an experi-
mental laboratory. Then, the final selected network will be a balance between
the most plausible networks from this design cycle and experimental difficulties
in in vitro and/or in vivo implementation.

3 Discussion

The time-consuming development of gene regulatory networks in synthetic bi-
ology is much improved with the use of mathematical modeling. However, the
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available tools lack the ability to soundly analyze the hypothesized GRN and
show a panoramic view of the possible dynamic behaviors in a qualitative con-
text. The main goal of this article was to propose a new design cycle in silico
that has the dual ability to apply a sound and complete qualitative tool [3] along
with stochasticity [1] to obtain a desired behavior from a particular GRN model
with the highest probability.

To provide a proof of principle, we apply the model-based design cycle to
a real-life, well-studied gene network in the synthetic biology literature. Here,
we successfully delve into the five-gene IRMA network to achieve oscillatory
dynamics by modifying the parameter space and/or network structure. While
these are preliminary findings, they show the ease of modifying a GRN design
and the power of predicting all possible dynamical behaviors. Computational
resources and valuable time is reduced dramatically by the symbolic approach
when compared to the various numerical attempts of [5]. Also, the parameter
search is quickly and easily modified with specifications in the initial inequalities
and does not require the extensive computational approaches previously taken
by [6].

The proposed simulator serves as a general-purpose automated-simulator;
therefore, the implementation into different network structures only requires the
GRN system to be formulated into a certain mathematical framework. This fea-
ture makes it an ideal candidate for network design and development, especially
in the light of clear design goals such as achieving a desired behavior or specific
requirements on transitional states before the desired outcome. Thus, the care-
fully designed phases of the model-based design cycle make it a promising tool
for the engineering and re-engineering of future synthetic networks.
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