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Imbernón, José M. Cecilia, and Horacio Pérez-Sánchez
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Abstract. The clinical use of platinum(II)-based drugs incurs serious
side effects due to the non-specific reactions with both malignant and
normal cells. To circumvent such major drawback, novel metallodrugs
might be combined with suitable carrier molecules, as antibodies, to en-
sure selective attacks on tumors while sparing healthy tissues. In this
contribution, we investigate the stability of a novel Pt(II) drug embed-
ded in Herceptin, an antibody able to reconise the breast cancer cells, by
using a parallel blind docking approach called BINDSURF. Our calcula-
tions reveal the main ligand-protein interactions in the binding pocket.
The reported data can be therefore used to further rationalise the syn-
thesis of improved drugs beyond classical cisplatin derivatives.
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1 Introduction

The unexpected discovery of the platinum salts bioactivity by Rosenberg ca.
sixty years ago [1] opened the door to a new a cancer treatment: the chemother-
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Fig. 1. Chemical structures of platinum(II)-based anticancer compounds

apy with transition metals [2]. In spite of the huge effort devoted to the synthesis
of novel platinum(II) derivatives, only few anticancer drugs are routinely used
in hospitals since the publication of the Rosenberg’s seminal work: the original
cisplatin approved in 1978 for treatment of ovarian and testicular cancer, the
second-generation carboplatin approved in 1989 for treatment of ovarian can-
cer, and a third-generation drug oxaliplatin approved in 2002 for treatment of
metastatic colorectal cancer (see Figure 1) [3, 4]. Indeed, these three compounds
are the most widely used drugs in the treatment of cancer [5].

The bioactivity of cisplatin-based drugs mainly involves two sequential steps.
At an early stage, the hydrolysis of cisplatin leads to a diaqua-complex, where
the leaving(s) group(s) is replaced by water molecules since both Pt–Cl and Pt–O
bonds are weaker than their Pt–N counterparts in square-planar Pt compounds
[6]. The activated drug might subsequently interact with a wide spectrum of
molecules such as proteins and peptides [7], though it is generally accepted that
binding to DNA is the ultimate step in the anticancer activity [8, 9]. More specif-
ically cisplatin derivates react with two adjacent guanine-cytosine bases pairs
(GC) at N7 places leading to an intrastrand Pt-DNA cross-links adduct [10–12].
The caused disruption on both hydrogen bonding and stacking pattern of the
the base pairs finally induces the cancer cell apoptosis [13]. Unfortunately, none
of the approved platinum-based drugs are able to distinguish between healthy
and malignant cells. Such lack of tumour selectivity results in the localisation of
the damage in non-target tissues, which is the origin of the critical side effects
associated to chemotherapy, including its high neurotoxicity as well as the ac-
quired tumour resistance [14]. Consequently, one of the greatest challenges for
chemotherapy is to selectively drive the drug towards cancerous cells [15].

To minimise chemotherapy risk, novel cancer therapies can clearly take ad-
vantage of the so-called carrier molecules, that is, a host molecule able to protect
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the drug from side reactions while releasing it on the tumour area [16]. Among all
possible carrier molecules, the use of antibodies is a very promising alternative
as they can be biologically programmed to recognise cancer cells [17, 18]. This
is the case of Herceptin (trastuzumab), a humanised monoclonal antibody able
to selectively bind to the Her2/neu over-expressed protein of breast cancer cells
[19]. In that framework, Sun and co-workers have recently demonstrated that cis-
platin could be covalently coupled to Herceptin by using dumbbell-like Au-Fe3O4

nanoparticles [20]. Following this conjugation strategy, the platinum drug was
covalently bound to a bifunctional ligand that fix both cisplatin and herceptin.
According to their experimental evidences, the Herceptin enhances the cytotox-
icity of Pt in cancerous cells [20]. There is, however, a more straightforward ap-
proach proposed by Gao, Zingaro et al., who synthesised the novel platinum(II)
compound LPtCl2 (see Fig. 1) [21]. As one can see, LPtCl2 drug is based on
the oxaliplatin structure, and both share the central (R,R)-diaminocyclohexane
moiety. In contrast, LPtCl2 has two 2-hydroxy-5methyl groups that lead to a
large affinity for Herceptin in its activated form [LPt(H2O)2]. This chemical
feature allows to use a direct labelling procedure instead of a more complex
stepwise synthesis. As Gao, Zingaro and co-workers concluded, this novel drug
is bound to the Herceptin by metal complex coordination rather than by a co-
valent bond. Unfortunately, despite the potential application of the antibodies
as carrier molecules, biological data of such action are still scarce due to the
complexity of the system.

The present work fulfills this gap in the literature. More specifically, we use
a parallel blind docking approach called BINDSURF [22] for quantifying the
chemical interactions that govern the LPt(H2O)2–Herceptin binding. Our theo-
retical predictions can help in the development of novel therapies based on the
immunoconjugation of metallodrugs.
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