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Abstract. In this paper we address the GPU-based acceleration of the
alignment of 2D and 3D images in the context of Electron Tomography.
The alignment of images (2D) is part of the early stages in the 3D re-
construction of tomograms, since the images obtained by the electron
microscope must be transformed to correct the misalignments inherent
to Electron Microscopy. The alignment of volumes (3D) is applied in
the so-called subtomogram averaging, where several subtomograms are
aligned and averaged to improve the quality of the 3D reconstruction.
The results show that 2D alignment can be executed ×400 faster in com-
parison to a standard CPU. On the other hand, 3D alignment can be
×200 faster.
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1 Introduction

Electron Microscopy is an essential tool in modern biology, since it enables the
determination of the 3D structure of macromolecules (i.e. Single-Particle Analy-
sis – SPA [1]) and subcellular organelles (Electron Tomography – ET [2]). They
facilitate the study of the molecular mechanisms involved in the normal be-
havior of cells as well as in pathological situations. In ET, the 3D models are
extracted by processing hundreds of images generated by an electron microscope
and the process is divided into two stages: 2D alignment and 3D reconstruction.
After the 3D reconstruction has been performed, it is possible to improve the
reconstruction quality of a particular macromolecule by means of subtomogram
averaging [3] that is based on averaging several subtomograms. First, the macro-
molecules (i.e. ribosome) are extracted from different tomograms generating the
subtomograms. And then, before averaging, the subtomograms must be aligned
(3D alignment).

Alignment is performed by means of transforming images and computing
a measure that is used to guide an optimization process [4]. In this work, we
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focus on the application of both affine transformations (i.e. rotation, shifting and
scaling) and the computation of the cross-correlation [2, 4]. In 2D alignment, this
process is intended as a first phase of a two-step procedure. In the fist phase,
pairs of images from the whole set of images obtained by the electron microscope
– the tilt series – are aligned trying to maximize their cross-correlation. The
second phase performs the refinement of this preliminary alignment by means
of tracking common features among neighbor images, and it is based on massive
cross-correlation between small patches of several neighbor images [2, 5].

Regarding the first phase of the alignment, an image I1 can be aligned against
a reference image I2 by means of an optimization loop, where I1 is modified
(affine transformation) and the resemblance between I1 and I2 is computed
(cross-correlation ρI1,I2) until a solution that leads to a good matching between
the images is found. Since the optimization requires thousands of iterations and
hundreds of images must be aligned, this technique requires the use of powerful
computing systems such as computer clusters. Clusters enable the parallelization
of applications, but they have power consumption and heating issues, as well as a
high maintenance cost. Graphics Processing Units (GPUs [6]) provide a solution
to the scaling and power consumption problems of clusters [7]. A commodity PC
is connected to a GPU that takes on the majority of the processing, thus, leading
to high-performance and low-power systems. As a drawback, the development
times are superior to those of parallel software programming.

The acceleration of biomedical imaging applications through GPUs has been
addressed by many groups in the last decade [4]. In this paper we present an
optimized GPU implementation that combines in a single GPU kernel both the
transformation of the images (affine transformation) and the computation of the
measure (cross-correlation) for the alignment of images (2D) and volumes (3D).
The contributions of the paper are:

– Optimized GPU parallelization of 2D alignment.
– Optimized GPU parallelization of 3D alignment.
– Insights on the effect of memory access and mathematical precision.

The paper is divided as follows: Section 2 introduces the affine transforma-
tion and the computation of the cross-correlation for both images and volumes.
Section 3 briefly introduces the GPU programming model. Section 4 explains
the parallelization of the alignment. The results are presented in Section 5 and,
finally, the conclusions are drawn in Section 6.

2 Alignment in Electron Tomography and Subtomogram
Averaging

In this section we explain the way to align images and volumes by using affine
transformations. Algorithm 1 shows a typical optimization loop to align an image
I with a reference Iref . The algorithm outputs the aligned image Inew and the
affine transformation matrix AI used for the alignment. It is assumed that both
images are very similar and that they mainly differ in the alignment.
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Algorithm 1 Alignment of two images

Input: Iref , I
Output: Inew, AI

1: A = A0 # Initialize affine matrix
2: AI = A
3: ρbest = 0 #Initialize cross-correlation
4: while ¬{exit condition} do
5: Inew = TransformImage(I, A)
6: ρnew = ComputeRho(Inew, Iref )
7: if ρnew > ρbest then
8: ρbest = ρ, AI = A, I ′ = Inew

9: end if
10: Modify A # This depends on the optimization method selected
11: end while

2.1 2D alignment

The alignment of images in the context of Electron Tomography is presented in
Algorithm 2. In ET, several images of the same specimen are obtained by using
an electron microscope. The specimen is rotated by incrementing the angle with
respect to the electron beam, so each image is related to a different angle (i.e.
consecutive angles are paired with consecutive images). Eventually, all these
images are processed to obtain the tomogram containing the 3D structure of the
specimen. The actual angle of the images is affected by random deviations due
to mechanical errors and also because the electron beam moves the specimen.
Thus, it is necessary to correct this angle error (i.e. alignment).

Algorithm 2 shows the flow followed in ET as part of the first stage in the
alignment process. After this process, there is an alignment refinement that we
do not cover in this paper. Since the consecutive images should be very similar,
the images are aligned in couples of images (Ii, Ii+1), where Ii is used as the
reference. It must be noted that the alignment of each couple can be performed
in parallel. A typical image size is 2048 × 2048 pixels and the total number of
images is around 100. The values used for the rotation, translation an scaling
are within ±10o, ±300 pixels and in the interval [0.90, 1.2], respectively.

Algorithm 2 Alignment of images for Electron Tomography

Input: set {I0, I1, . . .}
Output: set {AI1 , AI2 , . . .}

1: for all Ii ∈ {I1, · · · } do
2: AIi+1 = Align(Ii, Ii+1)
3: end for
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Affine transformation
The affine transformation used in Electron Tomography is intended for per-

forming rotation, scaling and shifting of images. This is done by changing the
coordinates (x, y) of the pixels of the original image I by means of an affine
matrix A in order to obtain the transformed image I ′:x′y′

1

 = A

xy
1

 =

a11 a12 a13a21 a22 a23
0 0 1

xy
1

 (1)

The computation is performed more efficiently using as a reference the co-
ordinate system of the transformed image I ′. The values of the pixels in I ′ are
obtained by, first, transforming their coordinates using A−1, and, second, by
interpolating the intensities of the closest pixels to the new coordinates in image
I. This process is depicted in Fig. 1.

ROTATED IMAGE

ORIGINAL IMAGE

Fig. 1. Affine transformation of an image

A linear interpolation is chosen in this work since it has been reported to
provide good results in ET alignment [2]. Fig. 1 shows that 4 neighbors are used
to interpolate.

Cross-correlation
Given two images I1 and I2 the cross-correlation can be computed as follows:
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Eqn. 2 shows that it is necessary to compute several summations: all of the
elements of I1, all of the elements of I2, the square of the elements in I1, the
square of the elements of I2 and, finally, the product of the elements of both
images holding the same position. These summation will hinder parallelization
due to data dependency.

2.2 3D alignment

Algorithm 3 holds the basic scheme of the alignment for subtomogram averaging.
Now all subtomograms are aligned against a common reference. Initially, the
reference is one of the subtomograms. After the first round, the average of the
aligned subtomograms becomes the new reference for another iteration. The
process goes on until an exit condition is satisfied. Typical subtomogram sizes
are around 1003 voxels and there are several tens of them. In this scenario, the
misalignment between subtomograms can be high, so the optimization loop has
to explore a wider space than in the case of ET. The ranges for the rotation and
shifting are ±180o and ±5 pixels, respectively. Scaling is not considered.

Algorithm 3 Alignment in Subtomogram Averaging

Input: set {V0, V1, . . .}
Output: Vavrg

1: Vref = V0 # Initialize reference volume
2: while ¬{exit condition} do
3: for all Vi ∈ {V0, · · · } do
4: (Vnew,i) = Align(Vref , Vi)
5: end for
6: Vref = Average({Vnew,0, Vnew,1, · · · })
7: end while
8: Vavrg = Vref

The affine transformation is similar to that of the previous subsection but
it has an extra dimension, since now the problem is threedimensional. Also the
linear interpolation requires 8 neighbors instead of 4. And the cross-correlation
is computed in a similar fashion.

3 GPU acceleration

GPUs enable the massive parallelization of algorithms reaching speedups that
range from x10 to x300 [6] with a low-power consumption [7]. They are formed
of hundreds of processor cores that work in parallel, executing the same task
(kernel). They are popular among the scientific community due to their low
cost, their relatively programming simplicity and their floating-point computa-
tion capabilities. They have been applied to many disciplines, being well accepted
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among bioengineering research projects [8, 6]. Currently, the most popular GPUs
are connected to the PC through a PCIe connection, adding high-performance
computing capabilities at a low cost. They are designed for executing the same
processing to a huge volume of data. If the computation does not follow a regular
pattern (data dependency, conditional flows, etc.) they do not provide percepti-
ble performance gains. C-like programming languages (i.e. CUDA [8]) are used
to program the GPUs. They provide fast compilation and an easy integration
with traditional software.

CUDA encapsulates the architectural details of the GPU to the programmer,
in order to ease the development process and to facilitate portability to different
GPUs. There are several streaming processors (SP) holding several cores that
can work in parallel. The GPU executes the same kernel in parallel using different
data sets and each execution is called a thread. Each SP handles in parallel a
group of threads called a warp. The threads in a warp are executed in parallel
as long as there are no conditional branches. If different execution paths exist,
the SP executes in parallel all threads that points at the same instruction, so,
the SP must first cluster all threads that are in the same execution point, then,
it executes each cluster sequentially. Thus, the presence of conditional branches
can deteriorate performance considerably.

The programmer has some control on the way that threads work in parallel.
Threads are grouped in blocks using a 1D, 2D, or 3D mesh. As a result, each
thread has a 3-dimension identifier (ID). During scheduling, each block is as-
signed to an SP, and the SP starts the execution of all of its threads (by means
of warps). In a similar fashion, blocks are distributed in a 1D/2D mesh, called
a grid. Thus, the block also has an identifier, and this identifier is visible to
the threads belonging to it. Each thread can use the block and thread IDs to
generate the memory locations of the data sets that have to process and/or to
output.

Regarding memory, all threads can access global memory (DRAM), all threads
within a block access shared memory (SRAM), and eventually, each individual
thread accesses a set of local registers. The key point here is that global mem-
ory has a high capacity (i.e. 1-6 GB) but it is slow, while shared memory has
a small capacity (i.e. 16-48 KB) but it is fast (a couple of orders of magnitude
faster than global memory). Global memory must be accessed coalescedly, since
the read and write operations work with several consecutive bytes (32, 64, 128,
etc.), otherwise, there are prohibitive delays. Shared memory can be accessed
randomly.

A 2-level cache memory scheme is available. Each SP has assigned a L1 cache
and there is a global L2 cache memory. This relaxes the constraint regarding co-
alesced access to global memory. There is also a texture cache that contains
dedicated hardware to perform interpolation, meaning that it is possible to ac-
cess memory using a fractional address. The dedicated hardware handles the
interpolation so there is no latency penalty. This feature will be of most interest
in this work. Finally, there is another dedicated cache memory for constant data.
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As a final remark, given that an algorithm is suitable for parallelization, the
key to success in acceleration with a GPU are both the wise selection of the
block and grid shapes and sizes, and a correct use of the memory hierarchy.

4 CUDA implementation

4.1 Baseline implementations

The baseline implementations are single-thread C programs implementing Algo-
rithms 2 and 3.

4.2 Parallel implementation of 2D alignment

Only affine transformation: AT
Four different implementations were developed:

– AT16×16: Affine transformation using blocks with 16 × 16 threads.
– ATt16×16: Affine transformation using blocks with 16 × 16 threads and tex-

ture memory.
– AT128×1: Affine transformation using blocks with 128 threads that compute

a 128-pixel column.
– ATt128×1: Affine transformation using blocks with 128 threads that compute

a 128-pixel column using texture memory.

Fig. 2 shows the two distributions of blocks and threads used. Fig. 2(a)
displays the corresponding to AT16×16 and ATt16×16, where each block has 16×
16 = 256 threads, computing each of them a single value of the pixels of the
transformed image. Considering images of 2048 × 2048 pixels, this results in a
total of 1282 = 16384 blocks. If texture memory is used (ATt16×16) then the
threads must only compute the transformed coordinates of the pixels, since the
interpolation is being carried out by the specialized hardware of texture memory.
However, implementation AT16×16 must also compute the interpolation with the
four closest neighbors from the original image.

Fig. 2(b) displays the distribution for AT128×1 and ATt128×1. There are 162 =
256 blocks with 128 threads. Each thread now computes the values of a 128−pixel
vertical column of the transformed image. Again, if texture memory is used
(ATt128×1) the interpolation is done by hardware and, if only global memory
is used, then the interpolation routines are added to the thread computational
load.

These two implementations are complementary. The first is expected to be
very fast since the limited size of the 16 × 16-pixel blocks can make an efficient
use of the L1 cache. However, the latter makes a good use of the cache memory
only when the angles are close to ±n ·180o (see Fig. 1). So it is expected that the
16×16-thread scheme provides the best performance. Another difference between
the two approaches is that the first one does not allow the implementation of any
accumulation, since the threads are dealing only with one pixel of the output
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block(127,0)

block(1,0)

block(0,0)

block(127,127)
2048x2048-pixel image

block(0,1) block(0,127)

(a) 16× 16 threads/block

block(0,15)block(0,1)

block(15,15)

step 0
step 1

.

.

.

step 127

2048x2048-pixel image

block(15,0)

block(1,0)

block(0,0)

(b) 128 threads/block

Fig. 2. Blocks and threads distribution for 2D affine transformation
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image. This is important when combining the affine transformation with the
cross-correlation. The second approach is suitable for accumulation.

The rational for having implementations with and without texture memory
is to assess the impact of the specialized interpolation hardware.

Affine transformation and cross-correlation: ATC
A single kernel is used to combine the affine transformation and the cross-

correlation computation. Image I2 is transformed producing I ′2 and the cross-
correlation between the reference image I1 and I ′2 is computed. A single imple-
mentation was developed:

– ATCt2D: Affine transformation and cross-correlation using blocks with 128
threads that compute a 128-pixel column using texture memory.

The blocks and threads scheme is the one from Fig. 2(b). Now, as long as
the threads are computing the pixels of I ′2, the summations from eqn. (2) are
computed. In fact, only partial summations are computed in each block since
they do not handle the whole image but a single tile. Each thread computes
the partial summations for the assigned column from I ′2 and I1. When all the
threads are done with this task, a single thread carries out the summation of the
partial summations and stores the results in global memory. When the kernel is
finished, the host (CPU) gathers all the partial summations computed by the
blocks and finish the computation of ρ.

4.3 Parallel implementation of 3D alignment

The parallel implementation for the 3D scenario is based in the previous 2D
case. Two implementations were developed:

– ATC3D: 3D affine transformation and cross-correlation using blocks with
16 × 16 threads that compute a 90-pixel column.

– ATCt3D: 3D affine transformation and cross-correlation using blocks with
16 × 16 threads that compute a 90-pixel column using texture memory.

Fig. 3 displays the distribution of blocks and threads. Each blocks outputs a
cuboid of the transformed volume using 16 × 16 threads that handle a column
of voxels along the x axis. The volumes are assumed to have 90× 90× 90 voxels.
The affine transformation and the cross-correlation are computed as in the 2D
case.

5 Results

The different implementations were coded in C language to be executed on a
CPU, and also in CUDA for the GPU execution. The test platform was a PC
with an Intel-i7 (1,6 GHz and 4 GB of RAM) and graphics processor NVIDIA
GeForce-GTX480 (480 cores, 1.5 GB of RAM). The baseline was a single-thread
execution of the CPU code.
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Block(0,0) Th(1,0)

Th(15,0)

Block(1,0) Th(1,0)

Th(15,0)

Block(5,0) Th(1,0)

Th(15,0)

Block (0,1) Block (0,5)

Th(0,0)

Fig. 3. Blocks and threads distribution for 3D affine transformation and cross-
correlation

5.1 2D alignment

Affine transformation only
Fig. 4 displays the speedup obtained by the GPU vs. the angle of rotation for

the implementations AT16×16, ATt16×16, AT128×1 and ATt128×1. Note that only
rotation is considered. The speedup is the ratio between the CPU computation
time and the GPU computation time without including data transfer, that can
be considered negligible.

It is patent that the implementations using texture memory (ATt16×16 and
ATt128×1) outperform the ones no doing so (AT16×16 and AT128×1). For instance,
looking at Table 1, that holds the average speedups, it can be seen how the
mean speedup of ATt16×16 doubles that of AT16×16. Also, the mean speedup
of ATt128×1 is four times that of AT128×1. Another interesting feature is that
the implementations using texture memory are less sensitive to the angle. The
implementations based on 128 threads perform well only for small angles. This
is due to a poor use of the cache memory.

Table 1. Average speedup for 2D rotation

Range ATt16×16 ATt128×1 AT16×16 ATt128×1

±180o 405× 200× 201× 54×
±10o 369× 350× 249× 205×

As a final analysis, let us check the average speedup when the angles are in
the range required by the application (i.e. ET). Table 1 shows that when the
average is performed using angles in the range of ±10o the speedups of ATt16×16
and ATt128 × 1 become quite close, and the same happens for AT16 × 16 and
AT128×1. So, as a final remark we can safely state that choosing ATt128×1 as
seed to develop the combined affine transformation and cross-correlation is the
right choice.
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Fig. 4. Speedup obtained for the rotation of images

2D and 3D Affine Transformation and cross-correlation
Table 2 contains the average speedup for the 2D and 3D affine transformation

and cross-correlation computation. ATt2D was executed 125 times performing
random changes in the parameters of rotation, translation and scaling in the
range of the application (see Subsection 2.1). ATt3D and ATt3D were executed
46656 times changing the parameters specified for subtomogram averaging (see
subsection 2.2).

The results yield that 2D alignment can be performed approximately 400
times faster with the GPU. The 3D alignment can be performed 190 faster
compared to the CPU. This time, the use of texture memory achieves more than
double speed comparing comparing with the use of global memory.

The 3D alignment achieves a very good performance but it is approximately
half the performance of the 2D case. One of the main reasons for that is that
the CPU is able to compute the 3D affine transformations faster. A whole 90 ×
90 × 90-voxel volume can be stored in the cache memory, thus, memory access
is optimized, while a 2048× 2048 image is too big for that. Also, it was detected
that the GPU did not performed very well, even when texture memory was
used, if the volume was rotated along the y axis (see Fig. 3) using angles close
to ±90o, since data is accessed in a spare fashion, hindering any possible cache
optimization.

Table 2. Average speedup for 2D and 3D affine transformation and cross-correlation

ATCt2D ATCt3D ATC3D

398× 190× 85×
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6 Conclusions

In this paper we have presented the GPU-based implementation of both 2D and
3D alignment for Electron Microscopy applications. The speedup provided by
the GPU for 2D alignment is close to 200× while the speedup for 3D alignment
is approximately 400×. These results have been possible due to the fusion of
affine transformation and cross-correlation into a single GPU kernel, and also to
the use of texture memory.

The authors are now in the process of integrating these kernels within the
electron microscopy package Xmipp [2, 1].
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